DOI QR코드

DOI QR Code

Daraesoon (shoot of hardy kiwi) mitigates hyperglycemia in db/db mice by alleviating insulin resistance and inflammation

  • Ha-Neul Choi (Department of Food and Nutrition, Changwon National University) ;
  • Jung-In Kim (Institute of Digital Anti-Aging Healthcare, Inje University)
  • Received : 2023.12.13
  • Accepted : 2024.01.17
  • Published : 2024.02.01

Abstract

BACKGROUND/OBJECTIVES: Mitigating insulin resistance and hyperglycemia is associated with a decreased risk of diabetic complications. The effect of Daraesoon (shoot of hardy kiwi, Actinidia arguta) on hyperglycemia was investigated using a type 2 diabetes animal model. MATERIALS/METHODS: Seven-week-old db/db mice were fed either an AIN-93G diet or a diet containing 0.4% of a 70% ethanol extract of Daraesoon, whereas db/+ mice were fed the AIN-93G diet for 7 weeks. RESULTS: Consumption of Daraesoon significantly reduced serum glucose and blood glycated hemoglobin levels, along with homeostasis model assessment for insulin resistance in db/db mice. Conversely, Daraesoon elevated the serum adiponectin levels compared to the db/db control group. Furthermore, Daraesoon significantly decreased both serum and hepatic triglyceride levels, as well as serum total cholesterol levels. Additionally, consumption of Daraesoon resulted in decreased hepatic tumor necrosis factor-α and monocyte chemoattractant protein-1 expression. CONCLUSIONS: These results suggest that hypoglycemic effect of Daraesoon is mediated through the improvement of insulin resistance and the downregulation of pro-inflammatory cytokine expression in db/db mice.

Keywords

Acknowledgement

This research was supported by the Globalization of Korean Foods R&D program, funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

References

  1. International Diabetes Federation. IDF diabetes atlas. 10th ed [Internet]. Brussels: International Diabetes Federation; 2021 [cited 2023 September 10]. Available from: https://diabetesatlas.org/.
  2. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018;17:122.
  3. Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol 2020;10:785-809.
  4. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013;2013:139239.
  5. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14:222-31.
  6. Matsuzawa Y. Adiponectin: a key player in obesity related disorders. Curr Pharm Des 2010;16:1896-901.
  7. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018;41:2669-701.
  8. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058-70.
  9. Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb 2018;25:27-39.
  10. Campos C. Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 2012;124:90-7.
  11. Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb 2018;25:771-82.
  12. Matsuzaka T, Shimano H. New perspective on type 2 diabetes, dyslipidemia and non-alcoholic fatty liver disease. J Diabetes Investig 2020;11:532-4.
  13. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias DD, Gupta S, Singal PK. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2016;21:11-23.
  14. Alexandraki KI, Piperi C, Ziakas PD, Apostolopoulos NV, Makrilakis K, Syriou V, Diamanti-Kandarakis E, Kaltsas G, Kalofoutis A. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J Clin Immunol 2008;28:314-21.
  15. Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory mechanisms of diabetes and its vascular complications. Biomedicines 2022;10:1168.
  16. Ahn JH, Park Y, Yeon SW, Jo YH, Han YK, Turk A, Ryu SH, Hwang BY, Lee KY, Lee MK. Phenylpropanoid-conjugated triterpenoids from the leaves of Actinidia arguta and their inhibitory activity on α-glucosidase. J Nat Prod 2020;83:1416-23.
  17. Pinto D, Delerue-Matos C, Rodrigues F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: a review. Food Res Int 2020;136:109449.
  18. Lee AY, Kang MJ, Choe E, Kim JI. Hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. Nutr Res Pract 2015;9:262-7.
  19. Kwon D, Kim GD, Kang W, Park JE, Kim SH, Choe E, Kim JI, Auh JH. Pinoresinol diglucoside is screened as a putative α-glucosidase inhibiting compound in Actinidia arguta leaves. J Korean Soc Appl Bio Chem 2014;57:473-9.
  20. Kwak CS, Lee JH. In vitro antioxidant and anti-inflammatory effects of ethanol extracts from sprout of evening primrose (Oenothera laciniata) and gooseberry (Actinidia arguta). J Korean Soc Food Sci Nutr 2014;43:207-15.
  21. Kim GD, Lee JY, Auh JH. Metabolomic screening of anti-inflammatory compounds from the leaves of Actinidia arguta (hardy kiwi). Foods 2019;8:47.
  22. Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, Ruberte J, Simo R, Hernandez C. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One 2014;9:e97302.
  23. Piattini F, Le Foll C, Kisielow J, Rosenwald E, Nielsen P, Lutz T, Schneider C, Kopf M. A spontaneous leptin receptor point mutation causes obesity and differentially affects leptin signaling in hypothalamic nuclei resulting in metabolic dysfunctions distinct from db/db mice. Mol Metab 2019;25:131-41.
  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.
  25. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509.
  26. Wilding JP. The importance of weight management in type 2 diabetes mellitus. Int J Clin Pract 2014;68:682-91.
  27. Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P. (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorg Med Chem Lett 2012;22:5215-7.
  28. Ahlstrom P, Rai E, Chakma S, Cho HH, Rengasamy P, Sweeney G. Adiponectin improves insulin sensitivity via activation of autophagic flux. J Mol Endocrinol 2017;59:339-50.
  29. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 2016;8:101-9.
  30. Tamura Y, Yano M, Kawao N, Okumoto K, Ueshima S, Kaji H, Matsuo O. Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice. J Nutr Sci 2013;2:e37.
  31. Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 2016;36:68-80.
  32. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol 2018;17:83.
  33. Bayram HM, Majoo FM, Ozturkcan A. Polyphenols in the prevention and treatment of non-alcoholic fatty liver disease: an update of preclinical and clinical studies. Clin Nutr ESPEN 2021;44:1-14.
  34. Rodriguez-Ramiro I, Vauzour D, Minihane AM. Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms. Proc Nutr Soc 2016;75:47-60.
  35. Almeida D, Pinto D, Santos J, Vinha AF, Palmeira J, Ferreira HN, Rodrigues F, Oliveira MB. Hardy kiwifruit leaves (Actinidia arguta): an extraordinary source of value-added compounds for food industry. Food Chem 2018;259:113-21.
  36. Armandi A, Rosso C, Caviglia GP, Bugianesi E. Insulin resistance across the spectrum of nonalcoholic fatty liver disease. Metabolites 2021;11:155.
  37. Frankowski R, Kobierecki M, Wittczak A, Rozycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 diabetes mellitus, non-alcoholic fatty liver disease, and metabolic repercussions: the vicious cycle and its interplay with inflammation. Int J Mol Sci 2023;24:9677.
  38. Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 2009;9:299-314.
  39. Liu Y, Song H, Wang L, Xu H, Shu X, Zhang L, Li Y, Li D, Ji G. Hepatoprotective and antioxidant activities of extracts from Salvia-Nelumbinis naturalis against nonalcoholic steatohepatitis induced by methionine-and choline-deficient diet in mice. J Transl Med 2014;12:315.
  40. Ni Y, Zhuge F, Nagashimada M, Ota T. Novel action of carotenoids on non-alcoholic fatty liver disease: macrophage polarization and liver homeostasis. Nutrients 2016;8:391.
  41. Zhong L, Huang L, Xue Q, Liu C, Xu K, Shen W, Deng L. Cell-specific elevation of Runx2 promotes hepatic infiltration of macrophages by upregulating MCP-1 in high-fat diet-induced mice NAFLD. J Cell Biochem 2019;120:11761-74.
  42. Rull A, Rodriguez F, Aragones G, Marsillach J, Beltran R, Alonso-Villaverde C, Camps J, Joven J. Hepatic monocyte chemoattractant protein-1 is upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine 2009;48:273-9.
  43. Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, Torjesen PA, Birkeland K, Bjoro K, Aukrust P. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006;44:1167-74.
  44. Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, Smith PT, Shanmugam K, Munch G, Wu MJ, et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med 2012;12:173.
  45. Silva-Boghossian CM, Dezonne RS. What are the clinical and systemic results of periodontitis treatment in obese individuals? Curr Oral Health Rep 2021;8:48-65.