DOI QR코드

DOI QR Code

Dynamic characteristics of CFRP-Strengthened wooden beams: Experimental and numerical study

  • Nur Sunar (Department of Civil Engineering, Ataturk University) ;
  • Habib Uysal (Department of Civil Engineering, Ataturk University)
  • Received : 2023.03.29
  • Accepted : 2024.01.18
  • Published : 2024.02.10

Abstract

Physical and chemical factors can cause traditional timber constructions to lose structural integrity. Knowing the dynamic properties of the building components is vital to avoid damage to the buildings from dynamic effects, a subset of physical effects. In this work, spruce and scotch pine wooden beams that had been strengthened in three distinct ways with carbon fiber strengthened polymer (CFRP) were investigated for changes in their dynamic properties. For this, CFRP was used to strengthening unstrengthened wooden beams in the form of bottom confinement, U-shaped confinement, and full confinement after the dynamic parameters of the beams were determined. By using experimental modal analysis with both free-free and fixed-fixed boundary conditions, the beams'initial natural frequencies were identified.

Keywords

References

  1. Alhayek, H. and Svecova, D. (2012), "Flexural stiffness and strength of GFRP-reinforced timber beams", J. Compos. Constr., 16(3), 245-252. https://doi.org/10.1061/(ASCE)CC.1943-5614.000026.
  2. Andor, K., Lengyel, A., Polgar, R., Fodor, T. and Karacsonyi, Z. (2015), "Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric", Constr. Build. Mater., 99, 200-207. https://doi.org/10.1016/j.conbuildmat.2015.09.026.
  3. Arriaga, F., Monton, J., Segues, E. and Iniguez-Gonzalez, G. (2014), "Determination of the mechanical properties of radiata pine timber by means of longitudinal and transverse vibration methods", Holzforschung, 68(3), 299-305. https://doi.org/10.1515/hf-2013-0087.
  4. ASTM, A. (2017), D2395-17, Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials.
  5. ASTM, C. (2008), ASTM C215: 08, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens.
  6. Balasubramanian, M. (2014), Composite Materials and Processing, CRC Press, Boca Raton.
  7. Bru, D., Baeza, F.J., Ivorra, S. and Garcia-Barba, J. (2012), "Dynamic characterization of timber beams reinforced with GFRP", Proceedings of the ISMA2012-USD2012, Int. Conf. on Noise and Vibration Engineering, Departement Werktuigkunde, KU Leuven, Heverlee, Belgium.
  8. Bru, D., Baeza, F.J., Varona, F.B., Garcia-Barba, J. and Ivorra, S. (2016), "Static and dynamic properties of retrofitted timber beams using glass fiber reinforced polymers", Mater. Struct., 49, 181-191. https://doi.org/10.1617/s11527-014-0487-0.
  9. Buell, T.W. and Saadatmanesh, H. (2005), "Strengthening timber bridge beams using carbon fiber", J. Struct. Eng., 131(1), 173-187. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(173).
  10. Cakir, F. and Uysal, H. (2015), "Experimental modal analysis of brick masonry arches strengthened prepreg composites", J. Cult. Herit., 16(3), 284-292. https://doi.org/10.1016/j.culher.2014.06.003.
  11. Cetrangolo, G., Rodriguez, S., Rodriguez, A. and Bano, V. (2015), "Influence of boundary conditions on the natural frequencies and damping of timber beams of sweet chestnut", Constr. Build. Mater., 94, 613-619. https://doi.org/10.1016/j.conbuildmat.2015.07.047.
  12. de la Rosa Garcia, P., Escamilla, A.C. and Garcia, M.N.G. (2013), "Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials", Compos. B Eng., 55, 528-536. Elsevier. https://doi.org/10.1016/j.compositesb.2013.07.016.
  13. Dempsey, D.D. and Scott, D.W. (2006), "Wood members strengthened with mechanically fastened FRP strips", J. Compos. Constr., 10(5), 392-398. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:5(39).
  14. Divos, F. and Toshinari, T. (2005), "Relation between static and dynamic modulus of elasticity of wood=Kapcsolat a faanyag statikus es dinamikus rugalmassagi modulusza kozott", Acta Silvatica et Lignaria Hungarica, 2005(1), 105-110. https://doi.org/10.37045/aslh-2005-0009
  15. Fossetti, M., Minafo, G. and Papia, M. (2015), "Flexural behaviour of glulam timber beams reinforced with FRP cords", Constr. Build. Mater., 95, 54-64. https://doi.org/10.1016/j.conbuildmat.2015.07.116.
  16. Gentile, C., Svecova, D. and Rizkalla, S.H. (2002), "Timber beams strengthened with GFRP bars: development and applications", J. Compos. Constr., 6(1), 11-20. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11).
  17. Ghanbari-Ghazijahani, T., Russo, T. and Valipour, H.R. (2020), "Lightweight timber I-Beams reinforced by composite materials", Compos. Struct., 233, 111579. https://doi.org/10.1016/j.compstruct.2019.111579.
  18. Gomez, S. and Svecova, D. (2008), "Behavior of split timber stringers reinforced with external GFRP sheets", J. Compos. Constr., 12(2), 202-211. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(202).
  19. Hay, S., Thiessen, K., Svecova, D. and Bakht, B. (2006), "Effectiveness of GFRP sheets for shear strengthening of timber", J. Compos. Constr., 10(6), 483-491. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(483).
  20. Hoseinpour, H., Valluzzi, M.R., Garbin, E. and Panizza, M. (2018), "Analytical investigation of timber beams strengthened with composite materials", Constr. Build. Mater., 191, 1242-1251. https://doi.org/10.1016/j.conbuildmat.2018.10.014.
  21. Ilic, J. (2001), "Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker", Holz als Roh-und Werkstoff, 59(3), 169-175. https://doi.org/10.1007/s001070100198.
  22. Ilic, J. (2003), "Dynamic MOE of 55 species using small wood beams", Holz als Roh-und Werkstoff, 61, 167-172. https://doi.org/10.1007/s00107-003-0367-8.
  23. Johns, K.C. and Lacroix, S. (2000), "Composite reinforcement of timber in bending", Can. J. Civil Eng., 27(5), 899-906. https://doi.org/10.1139/l00-017.
  24. Keenan, F.J. (1986), Limit States Design of Wood Structures, Morrison Hershfield.
  25. Khelifa, M., Auchet, S., Meausoone, P.J. and Celzard, A. (2015), "Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers", Eng. Struct., 101, 364-375. https://doi.org/10.1016/j.engstruct.2015.07.046.
  26. Kilincarslan, S., Turker, Y.S. and Avcar, M. (2023), "Numerical and experimental evaluation of the mechanical behavior of FRP-strengthened solid and glulam timber beams", J. Eng. Manage. Syst. Eng., 2(3), 158-169. https://doi.org/10.56578/jemse020303.
  27. Kim, Y.J. and Harries, K.A. (2010), "Modeling of timber beams strengthened with various CFRP composites", Eng. Struct., 32(10), 3225-3234. https://doi.org/10.1016/j.engstruct.2010.06.011.
  28. Kollmann, F.F.P., Kuenzi, E.W. and Stamm, A.J. (2012), Principles of Wood Science and Technology: II Wood Based Materials, Springer Science & Business Media.
  29. Li, Y.F., Tsai, M.J., Wei, T.F. and Wang, W.C. (2014), "A study on wood beams strengthened by FRP composite materials", Constr. Build. Mater., 62, 118-125. https://doi.org/10.1016/j.conbuildmat.2014.03.036.
  30. Li, Y.F., Xie, Y.M. and Tsai, M.J. (2009), "Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets", Constr. Build. Mater., 23(1), 411-422. https://doi.org/10.1016/j.conbuildmat.2007.11.005.
  31. Liang, S. and Fu, F. (2007), "Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber", J. For. Res. (Harbin), 18, 309-312. https://doi.org/10.1007/s11676-007-0062-4.
  32. Master Brace (2020), MasterBrace, MasterBrace Lifli Polimer Katalogu, http://www.master-builders-solutions.basf.com.tr.
  33. Merhar, M. (2020), "Determination of elastic properties of beech plywood by analytical, experimental and numerical methods", Forest., 11(11), 1221. https://doi.org/10.3390/f11111221.
  34. Motlagh, B., Gholipour, Y. and Ebrahimi, G.H. (2012), "Experimental investigation on mechanical properties of old wood members reinforced with frp composite", Wood Res., 57(2), 285-296.
  35. Nadir, Y., Nagarajan, P. and Ameen, M. (2016), "Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets", Constr. Build. Mater., 112, 547-555. https://doi.org/10.1016/j.conbuildmat.2016.02.133.
  36. Naghipour, M., Nematzadeh, M. and Yahyazadeh, Q. (2011), "Analytical and experimental study on flexural performance of WPC-FRP beams", Constr. Build. Mater., 25(2), 829-837. https://doi.org/10.1016/j.conbuildmat.2010.06.104.
  37. O'Ceallaigh, C., Sikora, K., McPolin, D. and Harte, A.M. (2019), "The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate", Eng. Struct., 200, 109702. https://doi.org/10.1016/j.engstruct.2019.109702.
  38. Ogawa, H. (2000), "Architectural application of carbon fibers: Development of new carbon fiber reinforced glulam", Carbon, 38(2), 211-226. https://doi.org/10.1016/S0008-6223(99)00146-3.
  39. Piao, C., Shupe, T.F., Tang, R.C. and Hse, C.Y. (2005), "Finite element analyses of wood laminated composite poles", Wood Fiber Sci., 37(3), 535-541.
  40. Radford, D.W., Van Goethem, D., Gutkowski, R.M. and Peterson, M.L. (2002), "Composite repair of timber structures", Constr. Build. Mater., 16(7), 417-425. https://doi.org/10.1016/S0950-0618(02)00044-2.
  41. Rajczyk, M. and Jonczyk, D. (2019), "Behavior of glulam beams strengthened with BFRP bars", IOP Conf. Ser. Mater. Sci. Eng., 603(4), 4042004. https://doi.org/10.1088/1757-899X/603/4/042004.
  42. Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons.
  43. Real, J.I., Sanchez, M.E., Real, T., Sanchez, F.J. and Zamorano, C. (2012), "Experimental modal analysis of railway concrete sleepers with cracks", Struct. Eng. Mech., 44(1), 51-60. https://doi.org/10.12989/sem.2012.44.1.051.
  44. Ren, W.X. and Zong, Z.H. (2004), "Output-only modal parameter identification of civil engineering structures", Struct. Eng. Mech., 17(3-4), 429-444. https://doi.org/10.12989/sem.2004.17.3_4.429.
  45. Roohnia, M. (2014), "An estimation of dynamic modulus of elasticity in cantilever flexural timber beams", Drvna Industrija, 65(1), 3-10. https://doi.org/10.5552/drind.2014.1229.
  46. Roohnia, M., Alavi-Tabar, S.E., Hossein, M.A., Brancheriau, L. and Tajdini, A. (2011), "Dynamic modulus of elasticity of drilled wooden beams", Nondestr. Test. Eval., 26(02), 141-153. https://doi.org/10.1080/10589759.2010.533175.
  47. Saad, K. and Lengyel, A. (2022), "Strengthening timber structural members with CFRP and GFRP: A state-of-the-art review", Polym. (Basel), 14(12), 2381. https://doi.org/10.3390/polym14122381.
  48. Schober, K.U. and Rautenstrauch, K. (2005), "Experimental investigation on flexural strengthening of timber structures with CFRP", Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), 457-464.
  49. Svecova, D. and Eden, R.J. (2004), "Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars-An experimental investigation", Can. J. Civil Eng., 31(1), 45-55. https://doi.org/10.1139/l03-069.
  50. Tickoo, S. (2019), ANSYS Workbench 2019 R2: A Tutorial Approach, CADCIM Technologies.
  51. Wang, Z., Li, L. and Gong, M. (2012), "Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique", Constr. Build. Mater., 28(1), 831-834. https://doi.org/10.1016/j.conbuildmat.2011.09.001.
  52. Wdowiak-Postulak, A. and Swit, G. (2021), "Behavior of glulam beams strengthened in bending with BFRP fabrics", Civil Environ. Eng. Report., 31(2), 1-14. https://doi.org/10.2478/ceer-2021-0016.
  53. Yang, J.L., Ilic, J. and Wardlaw, T. (2003a), "Relationships between static and dynamic modulus of elasticity for a mixture of clear and decayed eucalypt wood", Aust. For., 66(3), 193-196. https://doi.org/10.1080/00049158.2003.10674911.
  54. Yang, X., Amano, T., Ishimaru, Y. and Iida, I. (2003b), "Application of modal analysis by transfer function to nondestructive testing of wood II: modulus of elasticity evaluation of sections of differing quality in a wooden beam by the curvature of the flexural vibration wave", J. Wood Sci., 49, 140-144. https://doi.org/10.1007/s100860300022.
  55. Zhang, S., de Joigny, B.B. and Cui, J. (2022), "Behavior of timber beams strengthened with CFRP", https://doi.org/10.52202/069179-0004.
  56. Zou, G.P., Naghipour, M. and Taheri, F. (2003), "A nondestructive method for evaluating natural frequency of glued-laminated beams reinforced with GRP", Nondestr. Test. Eval., 19(1-2), 53-65. https://doi.org/10.1080/10589750310001596839.