References
- Alhayek, H. and Svecova, D. (2012), "Flexural stiffness and strength of GFRP-reinforced timber beams", J. Compos. Constr., 16(3), 245-252. https://doi.org/10.1061/(ASCE)CC.1943-5614.000026.
- Andor, K., Lengyel, A., Polgar, R., Fodor, T. and Karacsonyi, Z. (2015), "Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric", Constr. Build. Mater., 99, 200-207. https://doi.org/10.1016/j.conbuildmat.2015.09.026.
- Arriaga, F., Monton, J., Segues, E. and Iniguez-Gonzalez, G. (2014), "Determination of the mechanical properties of radiata pine timber by means of longitudinal and transverse vibration methods", Holzforschung, 68(3), 299-305. https://doi.org/10.1515/hf-2013-0087.
- ASTM, A. (2017), D2395-17, Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials.
- ASTM, C. (2008), ASTM C215: 08, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens.
- Balasubramanian, M. (2014), Composite Materials and Processing, CRC Press, Boca Raton.
- Bru, D., Baeza, F.J., Ivorra, S. and Garcia-Barba, J. (2012), "Dynamic characterization of timber beams reinforced with GFRP", Proceedings of the ISMA2012-USD2012, Int. Conf. on Noise and Vibration Engineering, Departement Werktuigkunde, KU Leuven, Heverlee, Belgium.
- Bru, D., Baeza, F.J., Varona, F.B., Garcia-Barba, J. and Ivorra, S. (2016), "Static and dynamic properties of retrofitted timber beams using glass fiber reinforced polymers", Mater. Struct., 49, 181-191. https://doi.org/10.1617/s11527-014-0487-0.
- Buell, T.W. and Saadatmanesh, H. (2005), "Strengthening timber bridge beams using carbon fiber", J. Struct. Eng., 131(1), 173-187. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(173).
- Cakir, F. and Uysal, H. (2015), "Experimental modal analysis of brick masonry arches strengthened prepreg composites", J. Cult. Herit., 16(3), 284-292. https://doi.org/10.1016/j.culher.2014.06.003.
- Cetrangolo, G., Rodriguez, S., Rodriguez, A. and Bano, V. (2015), "Influence of boundary conditions on the natural frequencies and damping of timber beams of sweet chestnut", Constr. Build. Mater., 94, 613-619. https://doi.org/10.1016/j.conbuildmat.2015.07.047.
- de la Rosa Garcia, P., Escamilla, A.C. and Garcia, M.N.G. (2013), "Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials", Compos. B Eng., 55, 528-536. Elsevier. https://doi.org/10.1016/j.compositesb.2013.07.016.
- Dempsey, D.D. and Scott, D.W. (2006), "Wood members strengthened with mechanically fastened FRP strips", J. Compos. Constr., 10(5), 392-398. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:5(39).
- Divos, F. and Toshinari, T. (2005), "Relation between static and dynamic modulus of elasticity of wood=Kapcsolat a faanyag statikus es dinamikus rugalmassagi modulusza kozott", Acta Silvatica et Lignaria Hungarica, 2005(1), 105-110. https://doi.org/10.37045/aslh-2005-0009
- Fossetti, M., Minafo, G. and Papia, M. (2015), "Flexural behaviour of glulam timber beams reinforced with FRP cords", Constr. Build. Mater., 95, 54-64. https://doi.org/10.1016/j.conbuildmat.2015.07.116.
- Gentile, C., Svecova, D. and Rizkalla, S.H. (2002), "Timber beams strengthened with GFRP bars: development and applications", J. Compos. Constr., 6(1), 11-20. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11).
- Ghanbari-Ghazijahani, T., Russo, T. and Valipour, H.R. (2020), "Lightweight timber I-Beams reinforced by composite materials", Compos. Struct., 233, 111579. https://doi.org/10.1016/j.compstruct.2019.111579.
- Gomez, S. and Svecova, D. (2008), "Behavior of split timber stringers reinforced with external GFRP sheets", J. Compos. Constr., 12(2), 202-211. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(202).
- Hay, S., Thiessen, K., Svecova, D. and Bakht, B. (2006), "Effectiveness of GFRP sheets for shear strengthening of timber", J. Compos. Constr., 10(6), 483-491. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(483).
- Hoseinpour, H., Valluzzi, M.R., Garbin, E. and Panizza, M. (2018), "Analytical investigation of timber beams strengthened with composite materials", Constr. Build. Mater., 191, 1242-1251. https://doi.org/10.1016/j.conbuildmat.2018.10.014.
- Ilic, J. (2001), "Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker", Holz als Roh-und Werkstoff, 59(3), 169-175. https://doi.org/10.1007/s001070100198.
- Ilic, J. (2003), "Dynamic MOE of 55 species using small wood beams", Holz als Roh-und Werkstoff, 61, 167-172. https://doi.org/10.1007/s00107-003-0367-8.
- Johns, K.C. and Lacroix, S. (2000), "Composite reinforcement of timber in bending", Can. J. Civil Eng., 27(5), 899-906. https://doi.org/10.1139/l00-017.
- Keenan, F.J. (1986), Limit States Design of Wood Structures, Morrison Hershfield.
- Khelifa, M., Auchet, S., Meausoone, P.J. and Celzard, A. (2015), "Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers", Eng. Struct., 101, 364-375. https://doi.org/10.1016/j.engstruct.2015.07.046.
- Kilincarslan, S., Turker, Y.S. and Avcar, M. (2023), "Numerical and experimental evaluation of the mechanical behavior of FRP-strengthened solid and glulam timber beams", J. Eng. Manage. Syst. Eng., 2(3), 158-169. https://doi.org/10.56578/jemse020303.
- Kim, Y.J. and Harries, K.A. (2010), "Modeling of timber beams strengthened with various CFRP composites", Eng. Struct., 32(10), 3225-3234. https://doi.org/10.1016/j.engstruct.2010.06.011.
- Kollmann, F.F.P., Kuenzi, E.W. and Stamm, A.J. (2012), Principles of Wood Science and Technology: II Wood Based Materials, Springer Science & Business Media.
- Li, Y.F., Tsai, M.J., Wei, T.F. and Wang, W.C. (2014), "A study on wood beams strengthened by FRP composite materials", Constr. Build. Mater., 62, 118-125. https://doi.org/10.1016/j.conbuildmat.2014.03.036.
- Li, Y.F., Xie, Y.M. and Tsai, M.J. (2009), "Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets", Constr. Build. Mater., 23(1), 411-422. https://doi.org/10.1016/j.conbuildmat.2007.11.005.
- Liang, S. and Fu, F. (2007), "Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber", J. For. Res. (Harbin), 18, 309-312. https://doi.org/10.1007/s11676-007-0062-4.
- Master Brace (2020), MasterBrace, MasterBrace Lifli Polimer Katalogu, http://www.master-builders-solutions.basf.com.tr.
- Merhar, M. (2020), "Determination of elastic properties of beech plywood by analytical, experimental and numerical methods", Forest., 11(11), 1221. https://doi.org/10.3390/f11111221.
- Motlagh, B., Gholipour, Y. and Ebrahimi, G.H. (2012), "Experimental investigation on mechanical properties of old wood members reinforced with frp composite", Wood Res., 57(2), 285-296.
- Nadir, Y., Nagarajan, P. and Ameen, M. (2016), "Flexural stiffness and strength enhancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets", Constr. Build. Mater., 112, 547-555. https://doi.org/10.1016/j.conbuildmat.2016.02.133.
- Naghipour, M., Nematzadeh, M. and Yahyazadeh, Q. (2011), "Analytical and experimental study on flexural performance of WPC-FRP beams", Constr. Build. Mater., 25(2), 829-837. https://doi.org/10.1016/j.conbuildmat.2010.06.104.
- O'Ceallaigh, C., Sikora, K., McPolin, D. and Harte, A.M. (2019), "The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate", Eng. Struct., 200, 109702. https://doi.org/10.1016/j.engstruct.2019.109702.
- Ogawa, H. (2000), "Architectural application of carbon fibers: Development of new carbon fiber reinforced glulam", Carbon, 38(2), 211-226. https://doi.org/10.1016/S0008-6223(99)00146-3.
- Piao, C., Shupe, T.F., Tang, R.C. and Hse, C.Y. (2005), "Finite element analyses of wood laminated composite poles", Wood Fiber Sci., 37(3), 535-541.
- Radford, D.W., Van Goethem, D., Gutkowski, R.M. and Peterson, M.L. (2002), "Composite repair of timber structures", Constr. Build. Mater., 16(7), 417-425. https://doi.org/10.1016/S0950-0618(02)00044-2.
- Rajczyk, M. and Jonczyk, D. (2019), "Behavior of glulam beams strengthened with BFRP bars", IOP Conf. Ser. Mater. Sci. Eng., 603(4), 4042004. https://doi.org/10.1088/1757-899X/603/4/042004.
- Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons.
- Real, J.I., Sanchez, M.E., Real, T., Sanchez, F.J. and Zamorano, C. (2012), "Experimental modal analysis of railway concrete sleepers with cracks", Struct. Eng. Mech., 44(1), 51-60. https://doi.org/10.12989/sem.2012.44.1.051.
- Ren, W.X. and Zong, Z.H. (2004), "Output-only modal parameter identification of civil engineering structures", Struct. Eng. Mech., 17(3-4), 429-444. https://doi.org/10.12989/sem.2004.17.3_4.429.
- Roohnia, M. (2014), "An estimation of dynamic modulus of elasticity in cantilever flexural timber beams", Drvna Industrija, 65(1), 3-10. https://doi.org/10.5552/drind.2014.1229.
- Roohnia, M., Alavi-Tabar, S.E., Hossein, M.A., Brancheriau, L. and Tajdini, A. (2011), "Dynamic modulus of elasticity of drilled wooden beams", Nondestr. Test. Eval., 26(02), 141-153. https://doi.org/10.1080/10589759.2010.533175.
- Saad, K. and Lengyel, A. (2022), "Strengthening timber structural members with CFRP and GFRP: A state-of-the-art review", Polym. (Basel), 14(12), 2381. https://doi.org/10.3390/polym14122381.
- Schober, K.U. and Rautenstrauch, K. (2005), "Experimental investigation on flexural strengthening of timber structures with CFRP", Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), 457-464.
- Svecova, D. and Eden, R.J. (2004), "Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars-An experimental investigation", Can. J. Civil Eng., 31(1), 45-55. https://doi.org/10.1139/l03-069.
- Tickoo, S. (2019), ANSYS Workbench 2019 R2: A Tutorial Approach, CADCIM Technologies.
- Wang, Z., Li, L. and Gong, M. (2012), "Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique", Constr. Build. Mater., 28(1), 831-834. https://doi.org/10.1016/j.conbuildmat.2011.09.001.
- Wdowiak-Postulak, A. and Swit, G. (2021), "Behavior of glulam beams strengthened in bending with BFRP fabrics", Civil Environ. Eng. Report., 31(2), 1-14. https://doi.org/10.2478/ceer-2021-0016.
- Yang, J.L., Ilic, J. and Wardlaw, T. (2003a), "Relationships between static and dynamic modulus of elasticity for a mixture of clear and decayed eucalypt wood", Aust. For., 66(3), 193-196. https://doi.org/10.1080/00049158.2003.10674911.
- Yang, X., Amano, T., Ishimaru, Y. and Iida, I. (2003b), "Application of modal analysis by transfer function to nondestructive testing of wood II: modulus of elasticity evaluation of sections of differing quality in a wooden beam by the curvature of the flexural vibration wave", J. Wood Sci., 49, 140-144. https://doi.org/10.1007/s100860300022.
- Zhang, S., de Joigny, B.B. and Cui, J. (2022), "Behavior of timber beams strengthened with CFRP", https://doi.org/10.52202/069179-0004.
- Zou, G.P., Naghipour, M. and Taheri, F. (2003), "A nondestructive method for evaluating natural frequency of glued-laminated beams reinforced with GRP", Nondestr. Test. Eval., 19(1-2), 53-65. https://doi.org/10.1080/10589750310001596839.