DOI QR코드

DOI QR Code

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash (Department of Production Engineering, Veer Surendra University of Technology) ;
  • Trupti R Mahapatra (Department of Production Engineering, Veer Surendra University of Technology) ;
  • Punyapriya Mishra (Department of Mechanical Engineering, Veer Surendra University of Technology) ;
  • Debadutta Mishra (Department of Production Engineering, Veer Surendra University of Technology)
  • Received : 2023.02.09
  • Accepted : 2024.01.16
  • Published : 2024.02.10

Abstract

The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

Keywords

Acknowledgement

This work is supported by Department of Science and Technology, Govt. of India under Start up Research Grant via Reference no. (SERB/F7721/2019-20, Dated. 17 Dec 2019).

References

  1. Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H., Tounsi, A. and Hussain, M. (2021), "Hygro-thermo-mechanical bending of laminated composite plates using an innovative computational four variable refined Quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031. 
  2. Atalla, N. and Sgard, F. (2015), Finite Element and Boundary Methods in Structural Acoustics and Vibration, CRC Press.
  3. Atalla, N., Nicolas, J. and Gauthier, C. (1996), "Acoustic radiation of an unbaffled vibrating plate with general elastic bounday conditions", J. Acoust. Soc. Am., 99(3), 1484-1494. https://doi.org/10.1121/1.414727. 
  4. Benkhedda, A., Bedia, E.A.A., Tounsi, A. and Mahi, A. (2011), "Effect of hygrothermal relaxation stresses during ageing for composite plates", Mater. Tech., 99(3), 305-316. https://doi.org/10.1051/mattech/2011038. 
  5. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061. 
  6. Chamis, C.C. (1987), "Simplified composite micromechanics equations for hygral, thermal and moisture-related properties", Engineers' Guide to Composite Materials, Eds. Weeton, J.W., Peters, D.M. and Thomas. K.L., ASM International Materials Park, USA. 
  7. Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons. 
  8. Dai, H.L., Rao, Y.N. and Dai, T. (2016), "A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000-2015", Compos. Struct., 152, 199-225. https://doi.org/10.1016/j.compstruct.2016.05.042. 
  9. Dash, B., Mahapatra, T.R. and Mishra, D. (2023), "Vibroacoustic characterization of multi-layered composite structure under hygrothermal load using higher-order FEM-IBEM micromechanical model", J. Vib. Eng. Technol., 1-27. https://doi.org/10.1007/s42417-023-00939-z. 
  10. Djidar, F.Z., Hebali, H., Amara, K., Tounsi, A., Bendaho, B., Ghazwani, M.H. and Hussain, M. (2022), "Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory", Struct. Eng. Mech., 82(6), 725-734. https://doi.org/10.12989/sem.2022.82.6.725. 
  11. Du, M., Geng, Q. and Li, Y.M. (2016), "Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness", Compos. Struct., 157, 483-493. https://doi.org/10.1016/j.compstruct.2016.01.063. 
  12. Everstine, G.C. and Henderson, F.M. (1990), "Coupled finite element/boundary element approach for fluid-structure interaction", J. Acoust. Soc. Am., 87(5), 1938-1947. https://doi.org/10.1121/1.399320. 
  13. Fu, T., Wu, X., Xiao, Z., Chen, Z. and Li, J. (2021), "Vibroacoustic characteristics of eccentrically stiffened functionally graded material sandwich cylindrical shell under external mean fluid", Appl. Math. Model., 91, 214-231. https://doi.org/10.1016/j.apm.2020.09.061. 
  14. Geng, Q., Li, H. and Li, Y. (2014), "Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483. 
  15. Huang, X., Shen, L. and Zheng, J.J. (2004), "Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments", Compos. Sci. Technol., 64(10), 1419-1435. https://doi.org/10.1016/j.compscitech.2003.09.028. 
  16. Isaac, C.W., Wrona, S., Pawelczyk, M. and Roozen, N.B. (2021), "Numerical investigation of the vibro-acoustic response of functionally graded lightweight square panel at low and mid-frequency regions", Compos. Struct., 259, 113460. https://doi.org/10.1016/j.compstruct.2020.113460. 
  17. Jeyaraj, P., Ganesan, N. and Padmanabhan, C. (2009), "Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment", J. Sound Vib., 320(1), 322-338. https://doi.org/10.1016/j.jsv.2008.08.013. 
  18. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2008), "Vibration and acoustic response of an isotropic plate in a thermal environment", J. Vib. Acoust., 130(5), 051005. https://doi.org/10.1115/1.2948387. 
  19. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(03), 525-541. https://doi.org/10.1142/S1758825111001111. 
  20. Jiang, C.H., Chang, Y.H. and Kam, T.Y. (2014), "Optimal design of rectangular composite flat-panel sound radiators considering excitation location", Compos. Struct., 108, 65-76. https://doi.org/10.1016/j.compstruct.2013.09.005. 
  21. Kant, T. and Swaminathan, K. (2001), "analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X. 
  22. Kong, D., Wang, G., Li, W. and Ni, J. (2021), "Sound radiation from the plate backed by the rectangular cavity", Int. J. Mech. Sci., 191, 106072. https://doi.org/10.1016/j.ijmecsci.2020.106072. 
  23. Kumar, R. and Patil, H.S. (2013), "Hygrothermally induced nonlinear free vibration response of nonlinear elastically supported laminated composite plates with random system properties: Stochastic finite element micromechanical model", Front. Aerosp. Eng., 2(2), 143-156. 
  24. Li, F., Chen, Y. and Lv, M. (2021), "Vibro-acoustic characteristics of sigmoid functionally graded sandwich plates with temperature-dependent materials", Thin Wall. Struct., 159, 107310. https://doi.org/10.1016/j.tws.2020.107310. 
  25. Li, W. and Li, Y. (2015), "Vibration and sound radiation of an asymmetric laminated plate in thermal environments", Acta Mechanica, 28(1), 11-22. https://doi.org/10.1016/S0894-9166(15)60011-8. 
  26. Li, X. and Yu, K. (2015), "Vibration and acoustic responses of composite and sandwich panels under thermal environment", Compos. Struct., 131, 1040-1049. https://doi.org/10.1016/j.compstruct.2015.06.037. 
  27. Li, X., Yu, K., Han, J., Song, H. and Zhao. (2016), "Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment", Int. J. Mech. Sci., 119, 370-382. https://doi.org/10.1016/j.ijmecsci.2016.10.021. 
  28. Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018. 
  29. Naidu, N.V.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002. 
  30. Nanda, N. and Pradyumna S. (2011), "Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments", J. Compos. Mater., 45(20), 2103-2112. https://doi.org/10.1177/0021998311401061. 
  31. Ohlrich, M. and Hugin, C.T. (2004), "On the influence of boundary constraints and angled baffle arrangements on sound radiation from rectangular plates", J. Sound Vib., 277(1), 405-418. https://doi.org/10.1016/j.jsv.2003.11.038. 
  32. Putra, A. and Thompson, D.J. (2010), "Sound radiation from rectangular baffled and unbaffled plates", Appl. Acoust., 71(12), 1113-1125. https://doi.org/10.1016/j.apacoust.2010.06.009. 
  33. Qiao, Y. and Huang, Q. (2007), "The effect of boundary conditions on sound loudness radiated from rectangular plates", Arch. Appl. Mech., 77(1), 21-34. https://doi.org/10.1007/s00419-006-0075-z. 
  34. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press. 
  35. Remil, A., Benrahou, K.H., Draiche, K., Bousahla, A.A. and Tounsi, A. (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct. Eng. Mech., 70(3), 325-337. https://doi.org/10.12989/sem.2019.70.3.325 
  36. Sharma, N., Mahapatra T.R. and Panda, S.K. (2017), "Vibroacoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093. 
  37. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: A higher-order finite-boundary element approach", Proc. Inst. Mech. Eng., Part C, 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866. 
  38. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007. 
  39. Shen, H.S. (2001), "Hygrothermal effects on the postbuckling of shear deformable laminated plates", Int. J. Mech. Sci., 43(5), 1259-1281. https://doi.org/10.1016/S0020-7403(00)00058-8. 
  40. Shen, H.S., Zheng, J.J. and Huang, X.L. (2004), "The effects of hygrothermal conditions on the dynamic response of shear deformable laminated plates resting on elastic foundations", J. Reinf. Plast. Compos., 23(10), 1095-1113. https://doi.org/10.1177/0731684404037038. 
  41. Singh, B.N., Hota, R.N., Dwivedi, S., Jha, R. and Ranjan, V. (2022), "Acoustic response of sigmoid functionally graded thin plates: A parametric investigation", J. Vib. Eng. Technol., 10, 2509-2529. https://doi.org/10.1007/s42417-022-00500-4. 
  42. Singh, B.N., Ranjan, V. and Hota, R.N. (2022), "Vibroacoustic response from thin exponential functionally graded plates", Arch. Appl. Mech., 92, 2095-2118. https://doi.org/10.1007/s00419-022-02163-9. 
  43. Tong, Z., Zhang, Y., Zhang, Z. and Hua, H. (2007), "Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the Direct-BEM/FEM", J. Sound Vib., 299(3), 645-655. https://doi.org/10.1016/j.jsv.2006.06.063. 
  44. Upadhyay, A.K., Pandey, R. and K.K. Shukla, K.K. (2010), "Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading", Commun. Nonlin. Sci. Numer. Simul., 15(9), 2634-2650. https://doi.org/10.1016/j.cnsns.2009.08.026. 
  45. Wu, J.W. and Huang, L.Z. (2013), "Natural frequencies and acoustic radiation mode amplitudes of laminated composite plates based on the layerwise FEM", Int. J. Acoust. Vib., 18, 134-140. https://doi.org/10.20855/ijav.2013.18.3328. 
  46. Zhang, X, and Li, W.L. (2010), "A unified approach for predicting sound radiation from baffled rectangular plates with arbitrary boundary conditions", J. Sound Vib., 329(25), 5307-5320. https://doi.org/10.1016/j.jsv.2010.07.014. 
  47. Zhao, X, Geng, Q. and Li. Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353. 
  48. Zhao, X, Zhang, B. and Li, Y. (2017), "Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment", J. Vib. Control, 23(4), 673-692. https://doi.org/10.1177/1077546315581943. 
  49. Zhou, K., Su, J. and Hua, H. (2018), "Closed form solutions for vibration and sound radiation of orthotropic plates under thermal environment", Int. J. Struct. Stab. Dyn., 18(07), 1850098. https://doi.org/10.1142/S0219455418500980.