Acknowledgement
This work is supported by Department of Science and Technology, Govt. of India under Start up Research Grant via Reference no. (SERB/F7721/2019-20, Dated. 17 Dec 2019).
References
- Ameri, A., Fekrar, A., Bourada, F., Selim, M.M., Benrahou, K.H., Tounsi, A. and Hussain, M. (2021), "Hygro-thermo-mechanical bending of laminated composite plates using an innovative computational four variable refined Quasi-3D HSDT model", Steel Compos. Struct., 41(1), 31-44. https://doi.org/10.12989/scs.2021.41.1.031.
- Atalla, N. and Sgard, F. (2015), Finite Element and Boundary Methods in Structural Acoustics and Vibration, CRC Press.
- Atalla, N., Nicolas, J. and Gauthier, C. (1996), "Acoustic radiation of an unbaffled vibrating plate with general elastic bounday conditions", J. Acoust. Soc. Am., 99(3), 1484-1494. https://doi.org/10.1121/1.414727.
- Benkhedda, A., Bedia, E.A.A., Tounsi, A. and Mahi, A. (2011), "Effect of hygrothermal relaxation stresses during ageing for composite plates", Mater. Tech., 99(3), 305-316. https://doi.org/10.1051/mattech/2011038.
- Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
- Chamis, C.C. (1987), "Simplified composite micromechanics equations for hygral, thermal and moisture-related properties", Engineers' Guide to Composite Materials, Eds. Weeton, J.W., Peters, D.M. and Thomas. K.L., ASM International Materials Park, USA.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
- Dai, H.L., Rao, Y.N. and Dai, T. (2016), "A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000-2015", Compos. Struct., 152, 199-225. https://doi.org/10.1016/j.compstruct.2016.05.042.
- Dash, B., Mahapatra, T.R. and Mishra, D. (2023), "Vibroacoustic characterization of multi-layered composite structure under hygrothermal load using higher-order FEM-IBEM micromechanical model", J. Vib. Eng. Technol., 1-27. https://doi.org/10.1007/s42417-023-00939-z.
- Djidar, F.Z., Hebali, H., Amara, K., Tounsi, A., Bendaho, B., Ghazwani, M.H. and Hussain, M. (2022), "Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory", Struct. Eng. Mech., 82(6), 725-734. https://doi.org/10.12989/sem.2022.82.6.725.
- Du, M., Geng, Q. and Li, Y.M. (2016), "Vibrational and acoustic responses of a laminated plate with temperature gradient along the thickness", Compos. Struct., 157, 483-493. https://doi.org/10.1016/j.compstruct.2016.01.063.
- Everstine, G.C. and Henderson, F.M. (1990), "Coupled finite element/boundary element approach for fluid-structure interaction", J. Acoust. Soc. Am., 87(5), 1938-1947. https://doi.org/10.1121/1.399320.
- Fu, T., Wu, X., Xiao, Z., Chen, Z. and Li, J. (2021), "Vibroacoustic characteristics of eccentrically stiffened functionally graded material sandwich cylindrical shell under external mean fluid", Appl. Math. Model., 91, 214-231. https://doi.org/10.1016/j.apm.2020.09.061.
- Geng, Q., Li, H. and Li, Y. (2014), "Dynamic and acoustic response of a clamped rectangular plate in thermal environments: Experiment and numerical simulation", J. Acoust. Soc., 135(5), 2674-2682. https://doi.org/10.1121/1.4870483.
- Huang, X., Shen, L. and Zheng, J.J. (2004), "Nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal environments", Compos. Sci. Technol., 64(10), 1419-1435. https://doi.org/10.1016/j.compscitech.2003.09.028.
- Isaac, C.W., Wrona, S., Pawelczyk, M. and Roozen, N.B. (2021), "Numerical investigation of the vibro-acoustic response of functionally graded lightweight square panel at low and mid-frequency regions", Compos. Struct., 259, 113460. https://doi.org/10.1016/j.compstruct.2020.113460.
- Jeyaraj, P., Ganesan, N. and Padmanabhan, C. (2009), "Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment", J. Sound Vib., 320(1), 322-338. https://doi.org/10.1016/j.jsv.2008.08.013.
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2008), "Vibration and acoustic response of an isotropic plate in a thermal environment", J. Vib. Acoust., 130(5), 051005. https://doi.org/10.1115/1.2948387.
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(03), 525-541. https://doi.org/10.1142/S1758825111001111.
- Jiang, C.H., Chang, Y.H. and Kam, T.Y. (2014), "Optimal design of rectangular composite flat-panel sound radiators considering excitation location", Compos. Struct., 108, 65-76. https://doi.org/10.1016/j.compstruct.2013.09.005.
- Kant, T. and Swaminathan, K. (2001), "analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X.
- Kong, D., Wang, G., Li, W. and Ni, J. (2021), "Sound radiation from the plate backed by the rectangular cavity", Int. J. Mech. Sci., 191, 106072. https://doi.org/10.1016/j.ijmecsci.2020.106072.
- Kumar, R. and Patil, H.S. (2013), "Hygrothermally induced nonlinear free vibration response of nonlinear elastically supported laminated composite plates with random system properties: Stochastic finite element micromechanical model", Front. Aerosp. Eng., 2(2), 143-156.
- Li, F., Chen, Y. and Lv, M. (2021), "Vibro-acoustic characteristics of sigmoid functionally graded sandwich plates with temperature-dependent materials", Thin Wall. Struct., 159, 107310. https://doi.org/10.1016/j.tws.2020.107310.
- Li, W. and Li, Y. (2015), "Vibration and sound radiation of an asymmetric laminated plate in thermal environments", Acta Mechanica, 28(1), 11-22. https://doi.org/10.1016/S0894-9166(15)60011-8.
- Li, X. and Yu, K. (2015), "Vibration and acoustic responses of composite and sandwich panels under thermal environment", Compos. Struct., 131, 1040-1049. https://doi.org/10.1016/j.compstruct.2015.06.037.
- Li, X., Yu, K., Han, J., Song, H. and Zhao. (2016), "Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment", Int. J. Mech. Sci., 119, 370-382. https://doi.org/10.1016/j.ijmecsci.2016.10.021.
- Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018.
- Naidu, N.V.S. and Sinha, P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77(4), 475-483. https://doi.org/10.1016/j.compstruct.2005.08.002.
- Nanda, N. and Pradyumna S. (2011), "Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments", J. Compos. Mater., 45(20), 2103-2112. https://doi.org/10.1177/0021998311401061.
- Ohlrich, M. and Hugin, C.T. (2004), "On the influence of boundary constraints and angled baffle arrangements on sound radiation from rectangular plates", J. Sound Vib., 277(1), 405-418. https://doi.org/10.1016/j.jsv.2003.11.038.
- Putra, A. and Thompson, D.J. (2010), "Sound radiation from rectangular baffled and unbaffled plates", Appl. Acoust., 71(12), 1113-1125. https://doi.org/10.1016/j.apacoust.2010.06.009.
- Qiao, Y. and Huang, Q. (2007), "The effect of boundary conditions on sound loudness radiated from rectangular plates", Arch. Appl. Mech., 77(1), 21-34. https://doi.org/10.1007/s00419-006-0075-z.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Remil, A., Benrahou, K.H., Draiche, K., Bousahla, A.A. and Tounsi, A. (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct. Eng. Mech., 70(3), 325-337. https://doi.org/10.12989/sem.2019.70.3.325
- Sharma, N., Mahapatra T.R. and Panda, S.K. (2017), "Vibroacoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: A higher-order finite-boundary element approach", Proc. Inst. Mech. Eng., Part C, 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007.
- Shen, H.S. (2001), "Hygrothermal effects on the postbuckling of shear deformable laminated plates", Int. J. Mech. Sci., 43(5), 1259-1281. https://doi.org/10.1016/S0020-7403(00)00058-8.
- Shen, H.S., Zheng, J.J. and Huang, X.L. (2004), "The effects of hygrothermal conditions on the dynamic response of shear deformable laminated plates resting on elastic foundations", J. Reinf. Plast. Compos., 23(10), 1095-1113. https://doi.org/10.1177/0731684404037038.
- Singh, B.N., Hota, R.N., Dwivedi, S., Jha, R. and Ranjan, V. (2022), "Acoustic response of sigmoid functionally graded thin plates: A parametric investigation", J. Vib. Eng. Technol., 10, 2509-2529. https://doi.org/10.1007/s42417-022-00500-4.
- Singh, B.N., Ranjan, V. and Hota, R.N. (2022), "Vibroacoustic response from thin exponential functionally graded plates", Arch. Appl. Mech., 92, 2095-2118. https://doi.org/10.1007/s00419-022-02163-9.
- Tong, Z., Zhang, Y., Zhang, Z. and Hua, H. (2007), "Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the Direct-BEM/FEM", J. Sound Vib., 299(3), 645-655. https://doi.org/10.1016/j.jsv.2006.06.063.
- Upadhyay, A.K., Pandey, R. and K.K. Shukla, K.K. (2010), "Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading", Commun. Nonlin. Sci. Numer. Simul., 15(9), 2634-2650. https://doi.org/10.1016/j.cnsns.2009.08.026.
- Wu, J.W. and Huang, L.Z. (2013), "Natural frequencies and acoustic radiation mode amplitudes of laminated composite plates based on the layerwise FEM", Int. J. Acoust. Vib., 18, 134-140. https://doi.org/10.20855/ijav.2013.18.3328.
- Zhang, X, and Li, W.L. (2010), "A unified approach for predicting sound radiation from baffled rectangular plates with arbitrary boundary conditions", J. Sound Vib., 329(25), 5307-5320. https://doi.org/10.1016/j.jsv.2010.07.014.
- Zhao, X, Geng, Q. and Li. Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353.
- Zhao, X, Zhang, B. and Li, Y. (2017), "Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment", J. Vib. Control, 23(4), 673-692. https://doi.org/10.1177/1077546315581943.
- Zhou, K., Su, J. and Hua, H. (2018), "Closed form solutions for vibration and sound radiation of orthotropic plates under thermal environment", Int. J. Struct. Stab. Dyn., 18(07), 1850098. https://doi.org/10.1142/S0219455418500980.