참고문헌
- AISC 341-10 (2016), American Institute of Steel Construction, Seismic Provisions for Structural Steel Buildings, Seismic Provisions for Structural Steel Buildings, 1, 402.
- Berman, J.W. and Bruneau, M. (2007), "Experimental and analytical investigation of tubular links for eccentrically braced frames", Eng. Struct., 29(8), 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012.
- Blandon, C.A. and Priestley, M.J.N. (2005), "Equivalent viscous damping equations for direct displacement based design", J. Earthq. Eng., 9, 257-278. https://doi.org/10.1142/S1363246905002390.
- Chen, G.D. (2002), "The investigation to structural behavior of steel plate shear walls", Doctoral Dissertation, Tsinghua University, Beijing.
- Dubina, D. and Dinu, F. (2014), "Experimental evaluation of dual frame structures with thin-walled steel panels", Thin Wall. Struct., 78, 57-69. https://doi.org/10.1016/j.tws.2014.01.001.
- Farahbakhshtooli, A. and Bhowmick, A.K. (2021), "Nonlinear seismic analysis of perforated steel plate shear walls using a macro-model", Thin Wall. Struct., 166, 108022. https://doi.org/10.1016/j.tws.2021.108022.
- Farzampour, A., Laman, J.A. and Mofid, M. (2015), "Behavior prediction of corrugated steel plate shear walls with openings", J. Constr. Steel Res., 114, 258-268. https://doi.org/10.1016/j.jcsr.2015.07.018
- FEMA (2009), Quantification of Building Seismic Performance Factors, FEMA P695, Prepared by Applied Technology Council for the Federal Emergency Management Agency, Washington, DC.
- Ghosh, S. and Kharmale, S.B. (2010), "Research on steel plate shear wall: past, present and future", Structural Steel and Castings: Shapes and Standards, Properties and Applications, Nova Science Publishers Inc., Hauppauge, USA.
- Guo, H., Li, Y., Liang, G. and Liu, Y. (2017), "Experimental study of cross stiffened steel plate shear wall with semi-rigid connected frame", J. Constr. Steel Res., 135(5), 69-82. https://doi.org/10.1016/j.jcsr.2017.04.009.
- Jian, X. (2012), "Research on the behavior and design methods of unstiffened thin steel plate shear wall", Doctoral Dissertation, Chongqing University, Chongqing, China.
- Jin, S. and Bai, J. (2019), "Experimental investigation of bucklingrestrained steel plate shear walls with inclined-slots", J. Constr. Steel Res., 155, 144-156. https://doi.org/10.1016/j.jcsr.2018.12.021.
- Khaloo, A., Ghamari, A. and Foroutani, M. (2021), "On the design of stiffened steel plate shear wall with diagonal stiffeners considering the crack effect", Struct., 31, 828-841. https://doi.org/10.1016/j.istruc.2021.02.027.
- Li, S., Tian, J. and Liu, Y. (2017), "Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode", Earthq. Struct., 13(5), 443-454. https://doi.org/10.12989/eas.2017.13.5.443.
- Lu, J., Ding, Y., Wu, B., Li, Y. and Zhang, J. (2022), "Experimental study of buckling-restrained brace with longitudinally profiled steel core", Struct. Eng. Mech., 81(6), 715-728. https://doi.org/10.12989/sem.2022.81.6.715.
- Pachideh, G., Gholhaki, M. and Saedi Daryan, A. (2019), "Analyzing the damage index of steel plate shear walls using pushover analysis", Struct., 20, 437-451. https://doi.org/10.1016/j.istruc.2019.05.005
- Purba, R. and Bruneau, M. (2009), "Finite-element investigation and design recommendations for perforated steel plate shear walls", J. Struct. Eng., 135(11), 1367-1376. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000061.
- Qu, B. and Bruneau, M. (2010), "Behavior of vertical boundary elements in steel plate shear walls", Eng. J., 47(2), 109-122. https://doi.org/10.62913/engj.v47i2.977
- Sabouri-Ghomi, S. and Mamazizi, S. (2015), "Experimental investigation on stiffened steel plate shear walls with two rectangular openings", Thin Wall. Struct., 86, 56-66. https://doi.org/10.1016/j.tws.2014.10.005.
- Sabouri-Ghomi, S. and Sajjadi, S.R.A. (2012), "Experimental and theoretical studies of steel shear walls with and without stiffeners", J. Constr. Steel Res., 75, 152-159. https://doi.org/10.1016/j.jcsr.2012.03.018.
- Sabouri-Ghomi, S., Kharrazi, M.H.K., Mam-Azizi, S.E.D. and Sajadi, R.A. (2008), "Buckling behavior improvement of steel plate shear wall systems", Struct. Des. Tall Spec. Build., 17(4), 823-837. https://doi.org/10.1002/tal.394.
- Shekastehband, B., Azaraxsh, A.A., Showkati, H. and Pavir, A. (2017), "Behavior of semi-supported steel shear walls: Experimental and numerical simulations", Eng. Struct., 135, 161-176. https://doi.org/10.1016/j.engstruct.2017.01.004.
- Sigariyazd, M.A., Joghataie, A. and Attari, N.K.A. (2016), "Analysis and design recommendations for diagonally stiffened steel plate shear walls", Thin Wall. Struct., 103, 72-80. https://doi.org/10.1016/j.tws.2016.02.008.
- Slimani, A., Belaid, T., Saidani, M., Ammari, F. and Adman, F. (2023), "A new method for determining the effective length factor of columns in partially braced frames on elastic supports", Struct. Eng. Mech., 85(6), 825. https://doi.org/10.12989/sem.2023.85.6.825.
- Standard, B. (1993), Eurocode 3-Design of Steel Structures, BS EN, 1(1), 2005.
- Sun, Q., Gao, Y., Zhao, Z., Zheng, Y. (2021). "Experimental study on shear behavior of steel plates with different artificial corrosion positions", Struct., 31, 145-158. https://doi.org/10.1016/j.istruc.2021.01.079.
- Topkaya, C. and Kurban, C.O. (2009), "Natural periods of steel plate shear wall systems", J. Constr. Steel Res., 65(3), 542-551. https://doi.org/10.1016/j.jcsr.2008.03.006.
- Valizadeh, H., Azar, B.F., Veladi, H. and Sheidaii, M.R. (2021), "The shear capacity assessment of steel plate shear walls with peripheral circular holes", Thin Wall. Struct., 163, 107638. https://doi.org/10.1016/j.tws.2021.107638.
- Valizadeh, H., Veladi, H., Farahmand Azar, B. and Sheidaii, M.R. (2019), "Experimental investigation on cyclic behavior of butterfly-shaped links steel plate shear walls", Int. J. Eng., Trans. B: Appl., 32(11), 1559-1569. https://doi.org/10.5829/ije.2019.32.11a.07.
- Valizadeh, H., Veladi, H., Farahmand Azar, B. and Sheidaii, M.R. (2020), "The cyclic behavior of Butterfly-shaped Link Steel Plate Shear Walls with and without Buckling-restrainers", Struct., 27, 607-625. https://doi.org/10.1016/j.istruc.2020.06.012.
- Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/j.jcsr.2015.05.002.
- Wang, M., Zhang, X., Yang, L. and Yang, W. (2020), "Cyclic performance for low-yield point steel plate shear walls with diagonal T-shaped-stiffener", J. Constr. Steel Res., 171, 106163. https://doi.org/10.1016/j.jcsr.2020.106163.
- Yang, Y., Mu, Z. and Zhu, B. (2022), "Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model", Struct. Eng. Mech., 84(1), 113-127. https://doi.org/10.12989/sem.2022.84.1.113.
- Yu, J.G., Feng, X.T., Li, B. and Hao, J.P. (2018), "Cyclic performance of cross restrained steel plate shear walls with transverse braces", Thin Wall. Struct., 132, 250-264. https://doi.org/10.1016/j.tws.2018.08.020.
- Yu, J.G., Feng, X.T., Li, B., Hao, J.P., Elamin, A. and Ge, M.L. (2018). "Performance of steel plate shear walls with axially loaded vertical boundary elements", Thin Wall. Struct., 125, 152-163. https://doi.org/10.1016/j.tws.2018.01.021.
- Zhao, Z., Liu, J., Wang, B. and Gao, Y. (2023), "Post-buckling shear capacity of the corroded end panels of H-shaped steel beams", Thin Wall. Struct., 184, 110499. https://doi.org/10.1016/j.tws.2022.110499.
- Zhao, Z., Liu, J., Zhao, B., Jin, Z., Jian, X. and Zhang, N. (2023), "Shear capacity of corrugated steel plates with a random corrosion damage", Thin Wall. Struct., 193, 111264. https://doi.org/10.1016/j.tws.2023.111264.
- Zhao, Z., Zhang, M., Gao, Y. and Sun, Q. (2021), "Investigations on shear capacity of steel plates with local opening", J. Constr. Steel Res., 179, 106518. https://doi.org/10.1016/j.jcsr.2020.106518.
- Zhou, S., Sun, T., Zhao, Z., Zhang, N. and Zhang, T. (2023), "Compression capacity of corroded plates with three sides simply supported and one side free", Appl. Ocean Res., 135, 103569. https://doi.org/10.1016/j.apor.2023.103569.