DOI QR코드

DOI QR Code

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Ahmad Maleki (Department of Civil Engineering, Maragheh Branch, Islamic Azad University) ;
  • Ramin K. Badri (Department of Civil Engineering, Azarshahr Branch, Islamic Azad University)
  • Received : 2023.09.23
  • Accepted : 2024.01.12
  • Published : 2024.02.10

Abstract

Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Keywords

References

  1. AISC 341-10 (2016), American Institute of Steel Construction, Seismic Provisions for Structural Steel Buildings, Seismic Provisions for Structural Steel Buildings, 1, 402.
  2. Berman, J.W. and Bruneau, M. (2007), "Experimental and analytical investigation of tubular links for eccentrically braced frames", Eng. Struct., 29(8), 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012.
  3. Blandon, C.A. and Priestley, M.J.N. (2005), "Equivalent viscous damping equations for direct displacement based design", J. Earthq. Eng., 9, 257-278. https://doi.org/10.1142/S1363246905002390.
  4. Chen, G.D. (2002), "The investigation to structural behavior of steel plate shear walls", Doctoral Dissertation, Tsinghua University, Beijing.
  5. Dubina, D. and Dinu, F. (2014), "Experimental evaluation of dual frame structures with thin-walled steel panels", Thin Wall. Struct., 78, 57-69. https://doi.org/10.1016/j.tws.2014.01.001.
  6. Farahbakhshtooli, A. and Bhowmick, A.K. (2021), "Nonlinear seismic analysis of perforated steel plate shear walls using a macro-model", Thin Wall. Struct., 166, 108022. https://doi.org/10.1016/j.tws.2021.108022.
  7. Farzampour, A., Laman, J.A. and Mofid, M. (2015), "Behavior prediction of corrugated steel plate shear walls with openings", J. Constr. Steel Res., 114, 258-268. https://doi.org/10.1016/j.jcsr.2015.07.018
  8. FEMA (2009), Quantification of Building Seismic Performance Factors, FEMA P695, Prepared by Applied Technology Council for the Federal Emergency Management Agency, Washington, DC.
  9. Ghosh, S. and Kharmale, S.B. (2010), "Research on steel plate shear wall: past, present and future", Structural Steel and Castings: Shapes and Standards, Properties and Applications, Nova Science Publishers Inc., Hauppauge, USA.
  10. Guo, H., Li, Y., Liang, G. and Liu, Y. (2017), "Experimental study of cross stiffened steel plate shear wall with semi-rigid connected frame", J. Constr. Steel Res., 135(5), 69-82. https://doi.org/10.1016/j.jcsr.2017.04.009.
  11. Jian, X. (2012), "Research on the behavior and design methods of unstiffened thin steel plate shear wall", Doctoral Dissertation, Chongqing University, Chongqing, China.
  12. Jin, S. and Bai, J. (2019), "Experimental investigation of bucklingrestrained steel plate shear walls with inclined-slots", J. Constr. Steel Res., 155, 144-156. https://doi.org/10.1016/j.jcsr.2018.12.021.
  13. Khaloo, A., Ghamari, A. and Foroutani, M. (2021), "On the design of stiffened steel plate shear wall with diagonal stiffeners considering the crack effect", Struct., 31, 828-841. https://doi.org/10.1016/j.istruc.2021.02.027.
  14. Li, S., Tian, J. and Liu, Y. (2017), "Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode", Earthq. Struct., 13(5), 443-454. https://doi.org/10.12989/eas.2017.13.5.443.
  15. Lu, J., Ding, Y., Wu, B., Li, Y. and Zhang, J. (2022), "Experimental study of buckling-restrained brace with longitudinally profiled steel core", Struct. Eng. Mech., 81(6), 715-728. https://doi.org/10.12989/sem.2022.81.6.715.
  16. Pachideh, G., Gholhaki, M. and Saedi Daryan, A. (2019), "Analyzing the damage index of steel plate shear walls using pushover analysis", Struct., 20, 437-451. https://doi.org/10.1016/j.istruc.2019.05.005
  17. Purba, R. and Bruneau, M. (2009), "Finite-element investigation and design recommendations for perforated steel plate shear walls", J. Struct. Eng., 135(11), 1367-1376. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000061.
  18. Qu, B. and Bruneau, M. (2010), "Behavior of vertical boundary elements in steel plate shear walls", Eng. J., 47(2), 109-122. https://doi.org/10.62913/engj.v47i2.977
  19. Sabouri-Ghomi, S. and Mamazizi, S. (2015), "Experimental investigation on stiffened steel plate shear walls with two rectangular openings", Thin Wall. Struct., 86, 56-66. https://doi.org/10.1016/j.tws.2014.10.005.
  20. Sabouri-Ghomi, S. and Sajjadi, S.R.A. (2012), "Experimental and theoretical studies of steel shear walls with and without stiffeners", J. Constr. Steel Res., 75, 152-159. https://doi.org/10.1016/j.jcsr.2012.03.018.
  21. Sabouri-Ghomi, S., Kharrazi, M.H.K., Mam-Azizi, S.E.D. and Sajadi, R.A. (2008), "Buckling behavior improvement of steel plate shear wall systems", Struct. Des. Tall Spec. Build., 17(4), 823-837. https://doi.org/10.1002/tal.394.
  22. Shekastehband, B., Azaraxsh, A.A., Showkati, H. and Pavir, A. (2017), "Behavior of semi-supported steel shear walls: Experimental and numerical simulations", Eng. Struct., 135, 161-176. https://doi.org/10.1016/j.engstruct.2017.01.004.
  23. Sigariyazd, M.A., Joghataie, A. and Attari, N.K.A. (2016), "Analysis and design recommendations for diagonally stiffened steel plate shear walls", Thin Wall. Struct., 103, 72-80. https://doi.org/10.1016/j.tws.2016.02.008.
  24. Slimani, A., Belaid, T., Saidani, M., Ammari, F. and Adman, F. (2023), "A new method for determining the effective length factor of columns in partially braced frames on elastic supports", Struct. Eng. Mech., 85(6), 825. https://doi.org/10.12989/sem.2023.85.6.825.
  25. Standard, B. (1993), Eurocode 3-Design of Steel Structures, BS EN, 1(1), 2005.
  26. Sun, Q., Gao, Y., Zhao, Z., Zheng, Y. (2021). "Experimental study on shear behavior of steel plates with different artificial corrosion positions", Struct., 31, 145-158. https://doi.org/10.1016/j.istruc.2021.01.079.
  27. Topkaya, C. and Kurban, C.O. (2009), "Natural periods of steel plate shear wall systems", J. Constr. Steel Res., 65(3), 542-551. https://doi.org/10.1016/j.jcsr.2008.03.006.
  28. Valizadeh, H., Azar, B.F., Veladi, H. and Sheidaii, M.R. (2021), "The shear capacity assessment of steel plate shear walls with peripheral circular holes", Thin Wall. Struct., 163, 107638. https://doi.org/10.1016/j.tws.2021.107638.
  29. Valizadeh, H., Veladi, H., Farahmand Azar, B. and Sheidaii, M.R. (2019), "Experimental investigation on cyclic behavior of butterfly-shaped links steel plate shear walls", Int. J. Eng., Trans. B: Appl., 32(11), 1559-1569. https://doi.org/10.5829/ije.2019.32.11a.07.
  30. Valizadeh, H., Veladi, H., Farahmand Azar, B. and Sheidaii, M.R. (2020), "The cyclic behavior of Butterfly-shaped Link Steel Plate Shear Walls with and without Buckling-restrainers", Struct., 27, 607-625. https://doi.org/10.1016/j.istruc.2020.06.012.
  31. Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/j.jcsr.2015.05.002.
  32. Wang, M., Zhang, X., Yang, L. and Yang, W. (2020), "Cyclic performance for low-yield point steel plate shear walls with diagonal T-shaped-stiffener", J. Constr. Steel Res., 171, 106163. https://doi.org/10.1016/j.jcsr.2020.106163.
  33. Yang, Y., Mu, Z. and Zhu, B. (2022), "Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model", Struct. Eng. Mech., 84(1), 113-127. https://doi.org/10.12989/sem.2022.84.1.113.
  34. Yu, J.G., Feng, X.T., Li, B. and Hao, J.P. (2018), "Cyclic performance of cross restrained steel plate shear walls with transverse braces", Thin Wall. Struct., 132, 250-264. https://doi.org/10.1016/j.tws.2018.08.020.
  35. Yu, J.G., Feng, X.T., Li, B., Hao, J.P., Elamin, A. and Ge, M.L. (2018). "Performance of steel plate shear walls with axially loaded vertical boundary elements", Thin Wall. Struct., 125, 152-163. https://doi.org/10.1016/j.tws.2018.01.021.
  36. Zhao, Z., Liu, J., Wang, B. and Gao, Y. (2023), "Post-buckling shear capacity of the corroded end panels of H-shaped steel beams", Thin Wall. Struct., 184, 110499. https://doi.org/10.1016/j.tws.2022.110499.
  37. Zhao, Z., Liu, J., Zhao, B., Jin, Z., Jian, X. and Zhang, N. (2023), "Shear capacity of corrugated steel plates with a random corrosion damage", Thin Wall. Struct., 193, 111264. https://doi.org/10.1016/j.tws.2023.111264.
  38. Zhao, Z., Zhang, M., Gao, Y. and Sun, Q. (2021), "Investigations on shear capacity of steel plates with local opening", J. Constr. Steel Res., 179, 106518. https://doi.org/10.1016/j.jcsr.2020.106518.
  39. Zhou, S., Sun, T., Zhao, Z., Zhang, N. and Zhang, T. (2023), "Compression capacity of corroded plates with three sides simply supported and one side free", Appl. Ocean Res., 135, 103569. https://doi.org/10.1016/j.apor.2023.103569.