참고문헌
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12, 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-ElMottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
- Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the sizedependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006.
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
- Attia, M.A. and Mohamed, S.A. (2022), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
- Beni, Y.T., Mehralian, F. and Zeverdejani, M.K. (2017), "Sizedependent buckling analysis of different chirality SWCNT under combined axial and radial loading based on orthotropic model", Mater. Res. Expr., 4(6), 065004. https://doi.org/10.1088/2053-1591/aa7318.
- Bessaim, A., Houari, M.S.A., Bezzina, S., Merdji, A., Daikh, A.A., Belarbi, M.O. and Tounsi, A. (2023), "Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams", Struct. Eng. Mech., 86(6), 731. https://doi.org/10.12989/sem.2023.86.6.731.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2022b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach., 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
- Daikh, A.A., Belarbi, M.O., Ahmed, D., Houari, M.S.A., Avcar, M., Tounsi, A. and Eltaher, M.A. (2023), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mechanica, 234(2), 775-806. https://doi.org/10.1007/s00707-022-03405-1.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022a), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
- Drai, A., Daikh, A.A., Belarbi, M.O., Houari, M.S.A., Aour, B., Hamdi, A. and Eltaher, M.A. (2023), "Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams", Adv. Nano Res., 14(3), 211. https://doi.org/10.12989/anr.2023.14.3.211.
- Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
- Eringen, A.C. (1964), "Simple microfluids", Int. J. Eng. Sci., 2(2), 205-217. https://doi.org/10.1016/0020-7225(64)90005-9.
- Eringen, A.C. (1969), "Micropolar fluids with stretch", Int. J. Eng. Sci., 7(1), 115-127. https://doi.org/10.1016/0020-7225(69)90026-3.
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-x.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Esen, I. (2019a), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech.-A/Solid., 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
- Esen, I. (2019b), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
- Esen, I. (2020a), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", Int. J. Mech. Sci., 188, 105937. https://doi.org/10.1016/j.ijmecsci.2020.105937.
- Esen, I. (2020b), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
- Esen, I. and Ozmen, R. (2022a), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. https://doi.org/10.1016/ 0956-7151(94)90502-9.
- Fu, Y., Du, H., Huang, W., Zhang, S. and Hu, M. (2004), "TiNibased thin films in MEMS applications: A review", Sensor. Actuator. A: Phys., 112(2-3), 395-408. https://doi.org/10.1016/j.sna.2004.02.019.
- Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184, 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066.
- Hong, J., Wang, S., Qiu, X. and Zhang, G. (2022), "Bending and wave propagation analysis of magneto-electro-elastic functionally graded porous microbeams", Crystal., 12(5), 732.
- Hu, H., Yu, T. and Bui, T.Q. (2021), "Dynamic and static isogeometric analysis for laminated Timoshenko curved microbeams", Eng. Anal. Bound. Elem., 128, 90-104. https://doi.org/10.1016/j.enganabound.2021.03.019.
- Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
- Karamanli, A. and Vo, T.P. (2020), "Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory", Compos. Struct., 246, 112401. https://doi.org/10.1016/j.compstruct.2020.112401.
- Karamanli, A. and Vo, T.P. (2021), "A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory", Compos. Struct., 257, 113066. https://doi.org/10.1016/j.compstruct.2020.113066.
- Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
- Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/s0022-5096(03)00053-x.
- Lau, K.T., Cheung, H.Y., Lu, J., Yin, Y.S., Hui, D. and Li, H.L. (2008), "Carbon nanotubes for space and bio-engineering applications", J. Comput. Theor. Nanosci., 5(1), 23-35. https://doi.org/10.1166/jctn.2008.003.
- Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012.
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012.
- Luat, D.T., Van Thom, D., Thanh, T.T., Van Minh, P., Van Ke, T. and Van Vinh, P. (2021), "Mechanical analysis of bifunctionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.
- Mahesh, V. (2022), "Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading", Mech. Adv. Mater. Struct., 29(19), 2707-2725. https://doi.org/10.1080/15376494.2021.1875086.
- Mahesh, V. and Harursampath, D. (2022), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059.
- Mahesh, V., Mahesh, V. and Ponnusami, S.A. (2023a), "Nonlinear active control of thermally induced pyro-coupled vibrations in porous-agglomerated CNT core sandwich plate with magnetopiezo-elastic facings", Acta Mechanica, 234(10), 5071-5099.- https://doi.org/10.1007/s00707-023-03641-z.
- Mahesh, V., Mahesh, V. and Ponnusami, S.A. (2023b), "FEMANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment", Mech. Adv. Mater. Struct., 1-24.
- Mehralian, F., Beni, Y.T. and Ansari, R. (2016a), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024.
- Mehralian, F., Beni, Y.T. and Ansari, R. (2016b), "On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure", Int. J. Mech. Sci., 119, 155-169. https://doi.org/10.1016/j.ijmecsci.2016.10.006.
- Merzouki, T., Ganapathi, M. and Polit, O. (2019), "A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams", Mech. Adv. Mater. Struct., 26(7), 614-630. https://doi.org/10.1080/15376494.2017.1410903.
- Mindlin, R.D. (1963), "Microstructure in linear elasticity", Dept. of Civil Engineering and Engineering Mechanics, Columbia Univ. New York.
- Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solid. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006- 5.
- Mindlin, R.D. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Columbia Univ. New York.
- Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.
- Neff, P. and Forest, S. (2007), "A geometrically exact micromorphicmodel for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results", J. Elast., 87(2-3), 239-276. https://doi.org/10.1007/s10659-007-9106-4.
- Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Meth. Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
- Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
- Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the nonlocal strain gradient theory", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6812.
- Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
- Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solid. Struct., 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X.
- Reddy, J. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solid., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
- Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013), "Finite element analysis of functionally graded nanoscale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012.
- Shao, D., Wang, Q., Tao, Y., Shao, W. and Wu, W. (2021), "A unified thermal vibration and transient analysis for quasi-3D shear deformation composite laminated beams with general boundary conditions", Int. J. Mech. Sci., 198, 106357. https://doi.org/10.1016/j.ijmecsci.2021.106357.
- Shenas, A.G., Malekzadeh, P. and Mohebpour, S. (2016), "Vibrational behavior of variable section functionally graded microbeams carrying microparticles in thermal environment", Thin Wall. Struct., 108, 122-137. https://doi.org/10.1016/j.tws.2016.08.010.
- Shu, J.Y. and Fleck, N.A. (1998), "The prediction of a size effect in microindentation", Int. J. Solid. Struct., 35(13), 1363-1383. https://doi.org/10.1016/s0020-7683(97)00112-1.
- Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/s1359-6454 (98)00153-0.
- Thai, H.T., Vo, T.P., Nguyen, T.K. and Kim, S.E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.
- Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/bf00253945.
- Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Arch. Rat. Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/bf00253050.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum, 492, 255-260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255.
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/ s0020-7683(02)00152-x.
- Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.