DOI QR코드

DOI QR Code

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar (Ecole Nationale Superieure d'Ingenieurs de Bretagne Sud, Institut de Recherche Dupuy de Lome (IRDL)) ;
  • Abdelhakim Kaci (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Aicha Bessaim (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Mohammed Sid Ahmed Houari (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Abdelouahed Tounsi (Faculte de Technologie, Departement de Genie Civil et Hydraulique, Universite de Saida Dr. Tahar Moulay)
  • Received : 2023.04.11
  • Accepted : 2023.12.11
  • Published : 2024.02.10

Abstract

In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Keywords

References

  1. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
  2. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  3. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12, 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  4. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  5. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-ElMottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  6. Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the sizedependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
  7. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006.
  8. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
  9. Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
  10. Attia, M.A. and Mohamed, S.A. (2022), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  11. Beni, Y.T., Mehralian, F. and Zeverdejani, M.K. (2017), "Sizedependent buckling analysis of different chirality SWCNT under combined axial and radial loading based on orthotropic model", Mater. Res. Expr., 4(6), 065004. https://doi.org/10.1088/2053-1591/aa7318.
  12. Bessaim, A., Houari, M.S.A., Bezzina, S., Merdji, A., Daikh, A.A., Belarbi, M.O. and Tounsi, A. (2023), "Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams", Struct. Eng. Mech., 86(6), 731. https://doi.org/10.12989/sem.2023.86.6.731.
  13. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  14. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  15. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2022b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach., 50(4), 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
  16. Daikh, A.A., Belarbi, M.O., Ahmed, D., Houari, M.S.A., Avcar, M., Tounsi, A. and Eltaher, M.A. (2023), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mechanica, 234(2), 775-806. https://doi.org/10.1007/s00707-022-03405-1.
  17. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  18. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022a), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38(Suppl 3), 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
  19. Drai, A., Daikh, A.A., Belarbi, M.O., Houari, M.S.A., Aour, B., Hamdi, A. and Eltaher, M.A. (2023), "Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams", Adv. Nano Res., 14(3), 211. https://doi.org/10.12989/anr.2023.14.3.211.
  20. Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.
  21. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.
  22. Eringen, A.C. (1964), "Simple microfluids", Int. J. Eng. Sci., 2(2), 205-217. https://doi.org/10.1016/0020-7225(64)90005-9.
  23. Eringen, A.C. (1969), "Micropolar fluids with stretch", Int. J. Eng. Sci., 7(1), 115-127. https://doi.org/10.1016/0020-7225(69)90026-3.
  24. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-x.
  25. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  26. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  27. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  28. Esen, I. (2019a), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech.-A/Solid., 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
  29. Esen, I. (2019b), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  30. Esen, I. (2020a), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", Int. J. Mech. Sci., 188, 105937. https://doi.org/10.1016/j.ijmecsci.2020.105937.
  31. Esen, I. (2020b), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  32. Esen, I. and Ozmen, R. (2022a), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  33. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  34. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  35. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. https://doi.org/10.1016/ 0956-7151(94)90502-9.
  36. Fu, Y., Du, H., Huang, W., Zhang, S. and Hu, M. (2004), "TiNibased thin films in MEMS applications: A review", Sensor. Actuator. A: Phys., 112(2-3), 395-408. https://doi.org/10.1016/j.sna.2004.02.019.
  37. Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184, 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066.
  38. Hong, J., Wang, S., Qiu, X. and Zhang, G. (2022), "Bending and wave propagation analysis of magneto-electro-elastic functionally graded porous microbeams", Crystal., 12(5), 732.
  39. Hu, H., Yu, T. and Bui, T.Q. (2021), "Dynamic and static isogeometric analysis for laminated Timoshenko curved microbeams", Eng. Anal. Bound. Elem., 128, 90-104. https://doi.org/10.1016/j.enganabound.2021.03.019.
  40. Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
  41. Karamanli, A. and Vo, T.P. (2020), "Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory", Compos. Struct., 246, 112401. https://doi.org/10.1016/j.compstruct.2020.112401.
  42. Karamanli, A. and Vo, T.P. (2021), "A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory", Compos. Struct., 257, 113066. https://doi.org/10.1016/j.compstruct.2020.113066.
  43. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  44. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.
  45. Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
  46. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/s0022-5096(03)00053-x.
  47. Lau, K.T., Cheung, H.Y., Lu, J., Yin, Y.S., Hui, D. and Li, H.L. (2008), "Carbon nanotubes for space and bio-engineering applications", J. Comput. Theor. Nanosci., 5(1), 23-35. https://doi.org/10.1166/jctn.2008.003.
  48. Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012.
  49. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012.
  50. Luat, D.T., Van Thom, D., Thanh, T.T., Van Minh, P., Van Ke, T. and Van Vinh, P. (2021), "Mechanical analysis of bifunctionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.
  51. Mahesh, V. (2022), "Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading", Mech. Adv. Mater. Struct., 29(19), 2707-2725. https://doi.org/10.1080/15376494.2021.1875086.
  52. Mahesh, V. and Harursampath, D. (2022), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059.
  53. Mahesh, V., Mahesh, V. and Ponnusami, S.A. (2023a), "Nonlinear active control of thermally induced pyro-coupled vibrations in porous-agglomerated CNT core sandwich plate with magnetopiezo-elastic facings", Acta Mechanica, 234(10), 5071-5099.- https://doi.org/10.1007/s00707-023-03641-z.
  54. Mahesh, V., Mahesh, V. and Ponnusami, S.A. (2023b), "FEMANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment", Mech. Adv. Mater. Struct., 1-24.
  55. Mehralian, F., Beni, Y.T. and Ansari, R. (2016a), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024.
  56. Mehralian, F., Beni, Y.T. and Ansari, R. (2016b), "On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure", Int. J. Mech. Sci., 119, 155-169. https://doi.org/10.1016/j.ijmecsci.2016.10.006.
  57. Merzouki, T., Ganapathi, M. and Polit, O. (2019), "A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams", Mech. Adv. Mater. Struct., 26(7), 614-630. https://doi.org/10.1080/15376494.2017.1410903.
  58. Mindlin, R.D. (1963), "Microstructure in linear elasticity", Dept. of Civil Engineering and Engineering Mechanics, Columbia Univ. New York.
  59. Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solid. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006- 5.
  60. Mindlin, R.D. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Columbia Univ. New York.
  61. Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.
  62. Neff, P. and Forest, S. (2007), "A geometrically exact micromorphicmodel for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results", J. Elast., 87(2-3), 239-276. https://doi.org/10.1007/s10659-007-9106-4.
  63. Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Meth. Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
  64. Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
  65. Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the nonlocal strain gradient theory", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.6812.
  66. Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2124000.
  67. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D. (2003), "Bending and stability analysis of gradient elastic beams", Int. J. Solid. Struct., 40(2), 385-400. https://doi.org/10.1016/S0020-7683(02)00522-X.
  68. Reddy, J. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solid., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  69. Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013), "Finite element analysis of functionally graded nanoscale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012.
  70. Shao, D., Wang, Q., Tao, Y., Shao, W. and Wu, W. (2021), "A unified thermal vibration and transient analysis for quasi-3D shear deformation composite laminated beams with general boundary conditions", Int. J. Mech. Sci., 198, 106357. https://doi.org/10.1016/j.ijmecsci.2021.106357.
  71. Shenas, A.G., Malekzadeh, P. and Mohebpour, S. (2016), "Vibrational behavior of variable section functionally graded microbeams carrying microparticles in thermal environment", Thin Wall. Struct., 108, 122-137. https://doi.org/10.1016/j.tws.2016.08.010.
  72. Shu, J.Y. and Fleck, N.A. (1998), "The prediction of a size effect in microindentation", Int. J. Solid. Struct., 35(13), 1363-1383. https://doi.org/10.1016/s0020-7683(97)00112-1.
  73. Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/s1359-6454 (98)00153-0.
  74. Thai, H.T., Vo, T.P., Nguyen, T.K. and Kim, S.E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.
  75. Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/bf00253945.
  76. Toupin, R.A. (1964), "Theories of elasticity with couple-stress", Arch. Rat. Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/bf00253050.
  77. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  78. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. Forum, 492, 255-260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255.
  79. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/ s0020-7683(02)00152-x.
  80. Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.