Acknowledgement
본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연혁력 선도대학 육성사업(LINC 3.0)의 연구결과입니다.
References
- K.-S. Kim, G. Ku, S.-J. Lee, S.-G. Park, and C. Cheong, "Wavenumber-frequency analysis of internal aerodynamic noise in constriction-expansion pipe," Appl. Sci. 7, 1137 (2017).
- G. Ku, S. Lee, C. Cheong, W. Ka ng, a nd K. Kim, "Development of high-fidelity numerical methodology based on wavenumber-frequency transform for quantifying internal aerodynamic noise in critical nozzle," Appl. Sci. 9, 2885 (2019).
- International Organization for Standardization, ISO 9300:2022 - Measurement of Gas Flow by Means of Critical Flow Nozzles (2022).
- T. McQueen, D. Burton, J. Sheridan, and M. C. Thompson, "High-Reynolds number backward-facing step flow control," Proc. 22nd AFMC, 209-212 (2020).
- F. Wang, S. Wu, and S. Zhu, "Numerical simulation of flow separation over a backward-facing step with high Reynolds number," Water Science and Engineering, 12, 145-154 (2019). https://doi.org/10.1016/j.wse.2019.05.003
- S. Lee, S. Lee, and C. Cheong, "Development of high-fidelity numerical methodology for prediction of vehicle interior noise due to external flow disturbances using LES and vibroacoustic techniques," Appl. Sci. 12, 6345 (2022).
- Siemens, Acoustics user's guide, PLM software Inc, (2019).
- R. H. Lyon and R. G. Dejong, Theory and Application of Statistical Energy Analysis (Lyon Corp, Cambridge, 1998), pp. 3-19.
- W. K. Blake, Mechanics of Flow-Induced Sound and Vibration (Academic Press, New York, 1986), pp. 323-351.