DOI QR코드

DOI QR Code

아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode

  • 김원범 (울산과학대학교 조선해양시스템공학과)
  • Won Beom Kim (Dept. of Naval Architecture and Ocean Engineering, Ulsan College)
  • 투고 : 2023.10.15
  • 심사 : 2023.11.10
  • 발행 : 2024.01.31

초록

선박, 해양구조물 또는 해상풍력 발전설비 하부구조와 같이 해양환경에서 사용되는 강구조물은 부식이 쉽게 발생한다. 본 연구에서는 실험을 통하여 희생전극으로 많이 사용되는 아연전극의 방식전위와 동등한 -1050mV vs. SCE에서 환경하중에 기인하는 부식피로균열 진전특성에 대하여 고찰하였다. 이를 위하여 본 연구에서는 -1050mV vs. SCE의 음극방식이 해수환경중의 피로균열 진전에 미치는 영향에 대해 합성해수중에서 파랑주기를 고려하여 실험적 고찰을 실시하였다. 음극방식에 의한 방식법은 부식을 차단하지만 과도한 방식은 화학반응에 의하여 수소를 발생시키며, 또한 석회질퇴적물을 발생시킨다. 피로균열진전율은 실험초기에는 해수부식환경하에서의 진전율보다 빠른구간이 나타났다. 그리고 균열길이가 증가하여 응력확대계수 K가 커질수록 균열의 진전율은 해수중의 피로균열진전율보다 느려지는 현상이 나타났다. 그러나 대기중의 균열진전속도보다는 항상 빠른 진전속도를 나타내었다.

Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

키워드

참고문헌

  1. M. Knop, J. Heath, Z. Sterjovski and S.P. Lynch, "Effects of Cycle Frequency on Corrosion-Fatigue Crack Growth in Cathodically Protected High-Strength Steels," Proceedia Engineering, Vol. 2, pp. 1243-1252, 2010.
  2. O. Adedipe, F. Brennan and A. Kolios, "Review of Corrosion Fatigue in Offshore Structures: Present Status and Challenges in the Offshore Wind Sector," Renewable and Sustainable Energy Reviews, Vol. 61, pp. 141-154, 2016. https://doi.org/10.1016/j.rser.2016.02.017
  3. W.B. Kim, "Corrosion Fatigue Crack Propagation Behaviour of TMCP Steel Plate at Ballast Tank of Ship Structure under the Condition of Cathodic Overprotection," Journal of the Korean Academia-Industrial Cooperation Society, Vol. 13, No. 6, pp. 2465-2471, 2012. https://doi.org/10.5762/KAIS.2012.13.6.2465
  4. P. Plodpradit, V.N. Dinh and K.D. Kim," Tripod-Supported Offshore Wind Turbines: Modal and Coupled Analysis and a Parametric Study Using X-SEA and FAST". Journal of Marine Science and Engineering, Vol. 7, No. 181, pp.1-20, 2019.
  5. A. Ebeling, D. Wippermann, T. Zimmermann, O. Klein, T. Kirchgeorg, I. Weinberg, S. Hasenbein, A. Plass and D. Profrock, "Investigation of potential metal emissions from galvanic anodes in offshore wind farms into North Sea sediments", Marine Pollution Bulletin, Vol. 194, Part A, pp. 1-13, Sep. 2023. https://doi.org/10.1016/j.marpolbul.2023.115396
  6. S. Paul, "Hydrogen in Aluminium-Coated Steels Exposed to Synthetic Seawater", Surfaces, Vol. 3, pp. 282-300, 2020. https://doi.org/10.3390/surfaces3030021
  7. J.H. Lee, K.H. Jung, J.C. Park and S.J. Kim, "Determination of Optimum Protection Potential for Cathodic Protection of Offshore Wind-Turbine-Tower Steel Substructure by using Potentiostatic Method," Journal of the Korean Society of Marine Engineering, Vol. 41, No. 3, pp. 230-237, 2007
  8. S.J. Kim, J.I. Kim and J.S. Kim, "Investigation on Optimum Protection Potential Decision of Al Alloy (5083F) in Sea Water by Impressed Current Cathodic Protection," Journal of Korean Society of Surface Science and Engineering, Vol. 40, No. 6, pp. 262-270, 2007.
  9. K.S. Jeong, M.H. Lee, K.J. Kim and K.M. Moon, "A Study on the Effect of Polarization Behaviors and Anode Generating Current, Consumption Rate due to Velocity & Contaminated Degree of Sea Water and Protected Structure Surface Condition," Journal of the Corrosion Science Society of Korea, Vol. 28, No. 6, pp. 454-463, 1999.
  10. Stress Intensity Factors Handbook, Vol. 1, Pergamon Press, pp.68, 1987.
  11. T.L. Anderson, "Fracture Mechanics," Taylor and Francis, pp.110, 2005.
  12. J.Y. Choi, J.S. Lee, J.G. Bong, S.J. Kim and J.S. Chung, "Evaluation on Fatigue Behavior of Resilience Pad for Sleeper Floating Track System in Urban Transit," The Journal of the Convergence on Culture Technology(JCCT), Vol. 6, No. 3, pp. 347-352, Aug. 2020. https://doi.org/10.17703/JCCT.2020.6.3.347
  13. J.Y. Choi, H.S. Park and J.S. Chung, "Evaluation on Fatigue Behavior of EP(Engineering Plastic) Friction PendulumBearing System," The Journal of the Convergence on Culture Technology(JCCT), Vol. 6, No. 4, pp. 703-708, Nov. 2020. https://doi.org/10.17703/JCCT.2020.6.4.703
  14. N. Kaewsakui, R. Putrontaraj and K. Kimapong, "The Effect of GMAW Parameters on Penetration, Hardness and Microstructure of AS3678-A350 High Strength Steel," International Journal of Advanced Culture Technology(IJACT), Vol. 3, Issue 1, pp. 169-178, 2015. https://doi.org/10.17703/IJACT.2015.3.1.169