DOI QR코드

DOI QR Code

Comparison of oral microbiome diversity between children and young adults in Korea

  • Jung Hwa Park (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Si Yeong Kim (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Jin Chung (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Hee Sam Na (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • Received : 2024.11.15
  • Accepted : 2024.12.10
  • Published : 2024.12.31

Abstract

The oral microbiome plays a vital role in maintaining oral and overall health and affects immune responses, digestion, and pathogen suppression. While most studies focus on age groups prone to specific conditions, such as dental caries in children or periodontal disease in older adults, limited data exist on preschool-aged children and young adults. This study investigates the composition and diversity of the oral microbiome between these age groups for enhanced understanding of a healthy oral microbiome. Microbial samples from the supragingival regions of 41 children and 31 young adults in Korea were analyzed using 16S rRNA gene sequencing. Alpha and beta diversity were assessed, and linear discriminant analysis effect size (LEfSe) identified taxa with significant differences in abundance between the groups. No significant differences in alpha diversity were observed between children and young adults however, beta diversity analysis revealed notably compositional differences. At the phylum level, Firmicutes were more abundant in children, whereas Actinobacteria were more prevalent in young adults. Genera such as Veillonella and Lautropia were more abundant among children, whereas Haemophilus and Rothia were more common among young adults. LEfSe analysis identified Veillonella rogosae and Lautropia mirabilis as more abundant in children, whereas Haemophilus parainfluenzae and Rothia dentocariosa were more prevalent in young adults. The observed differences suggest that children's microbiomes are associated with biofilm development, while young adults' microbiomes involve biofilm maturation and immune modulation. These findings highlight the age-related shift in oral microbiome composition, emphasizing the importance of monitoring these changes to support long-term oral health.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745-59. doi: 10.1038/s41579-018-0089-x
  2. Sultan AS, Kong EF, Rizk AM, Jabra-Rizk MA. The oral microbiome: a lesson in coexistence. PLoS Pathog 2018;14:e1006719. doi: 10.1371/journal.ppat.1006719
  3. Li X, Liu Y, Yang X, Li C, Song Z. The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. Front Microbiol 2022;13:895537. doi: 10.3389/fmicb.2022.895537
  4. Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The contribution of the human oral microbiome to oral disease: a review. Microorganisms 2023;11:318. doi: 10.3390/microorganisms11020318
  5. Negrini TC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay among the oral microbiome, oral cavity conditions, the host immune response, diabetes mellitus, and its associatedrisk factors-an overview. Front Oral Health 2021;2:697428. doi: 10.3389/froh.2021.697428
  6. Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: a comprehensive review and emerging insights. Front Immunol 2022;13:1010368. doi: 10.3389/fimmu.2022.1010368
  7. Gomez A, Nelson KE. The oral microbiome of children: development, disease, and implications beyond oral health. Microb Ecol 2017;73:492-503. doi: 10.1007/s00248-016-0854-1
  8. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-5. doi: 10.1073/pnas.1002601107
  9. Mason MR, Chambers S, Dabdoub SM, Thikkurissy S, Kumar PS. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 2018;6:67. doi: 10.1186/s40168-018-0443-2
  10. Arishi RA, Lai CT, Geddes DT, Stinson LF. Impact of breastfeeding and other early-life factors on the development of the oral microbiome. Front Microbiol 2023;14:1236601. doi: 10.3389/fmicb.2023.1236601
  11. Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 2020;8:308. doi: 10.3390/microorganisms8020308
  12. Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013;69:137-43. doi: 10.1016/j.phrs.2012.11.006
  13. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14. doi: 10.1038/nature11234
  14. Kazeminia M, Abdi A, Shohaimi S, Jalali R, Vaisi-Raygani A, Salari N, Mohammadi M. Dental caries in primary and permanent teeth in children's worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med 2020;16:22. doi: 10.1186/s13005-020-00237-z
  15. David J, Wang NJ, Astrøm AN, Kuriakose S. Dental caries and associated factors in 12-year-old schoolchildren in Thiruvananthapuram, Kerala, India. Int J Paediatr Dent 2005;15:420-8. doi: 10.1111/j.1365-263X.2005.00665.x
  16. Sisk-Hackworth L, Ortiz-Velez A, Reed MB, Kelley ST. Compositional data analysis of periodontal disease microbial communities. Front Microbiol 2021;12:617949. doi: 10.3389/fmicb.2021.617949
  17. Duran-Pinedo A, Solbiati J, Teles F, Teles R, Zang Y, FriasLopez J. Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biol 2021;19:240. doi: 10.1186/s12915-021-01169-z
  18. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012;2012:251364. doi: 10.1155/2012/251364
  19. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, AlGhalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852-7. doi: 10.1038/s41587-019-0209-9
  20. Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. Methods Mol Biol 2018;1849:113-29. doi: 10.1007/978-1-4939-8728-3_8
  21. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60. doi: 10.1186/gb2011-12-6-r60
  22. Willis AD. Rarefaction, alpha diversity, and statistics. Front Microbiol 2019;10:2407. doi: 10.3389/fmicb.2019.02407
  23. Arweiler NB, Netuschil L. The oral microbiota. Adv Exp Med Biol 2016;902:45-60. doi: 10.1007/978-3-319-31248-4_4
  24. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000 2006;42:47-79. doi: 10.1111/j.1600-0757.2006.00187.x
  25. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 2009;9:259. doi: 10.1186/1471-2180-9-259
  26. Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol 2020;11:555465. doi: 10.3389/fmicb.2020.555465
  27. Yi K, Rasmussen AW, Gudlavalleti SK, Stephens DS, Stojiljkovic I. Biofilm formation by Neisseria meningitidis. Infect Immun 2004;72:6132-8. doi: 10.1128/IAI.72.10.6132-6138.2004
  28. Burcham ZM, Garneau NL, Comstock SS, Tucker RM, Knight R, Metcalf JL; Genetics of Taste Lab Citizen Scientists. Patterns of oral microbiota diversity in adults and children: a crowdsourced population study. Sci Rep 2020;10:2133. doi: 10.1038/s41598-020-59016-0
  29. Rossmann SN, Wilson PH, Hicks J, Carter B, Cron SG, Simon C, Flaitz CM, Demmler GJ, Shearer WT, Kline MW. Isolation of Lautropia mirabilis from oral cavities of human immunodeficiency virus-infected children. J Clin Microbiol 1998;36:1756-60. doi: 10.1128/JCM.36.6.1756-1760.1998
  30. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 2009;80:1421-32. doi: 10.1902/jop.2009.090185
  31. Papapanou PN, Park H, Cheng B, Kokaras A, Paster B, Burkett S, Watson CW, Annavajhala MK, Uhlemann AC, Noble JM. Subgingival microbiome and clinical periodontal status in an elderly cohort: the WHICAP ancillary study of oral health. J Periodontol 2020;91 Suppl 1(Suppl 1):S56-67. doi: 10.1002/JPER.20-0194
  32. Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: beyond bridging species in oral biofilm ecology. Front Oral Health 2021;2:774115. doi: 10.3389/froh.2021.774115
  33. Takahashi N, Nyvad B. Ecological hypothesis of dentin and root caries. Caries Res 2016;50:422-31. doi: 10.1159/000447309
  34. Heller D, Helmerhorst EJ, Gower AC, Siqueira WL, Paster BJ, Oppenheim FG. Microbial diversity in the early in vivo-formed dental biofilm. Appl Environ Microbiol 2016;82:1881-8. doi: 10.1128/AEM.03984-15
  35. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32. doi: 10.1128/JCM.43.11.5721-5732.2005
  36. Faveri M, Figueiredo LC, Duarte PM, Mestnik MJ, Mayer MP, Feres M. Microbiological profile of untreated subjects with localized aggressive periodontitis. J Clin Periodontol 2009;36:739-49. doi: 10.1111/j.1600-051X.2009.01449.x
  37. Liljemark WF, Bloomquist CG, Uhl LA, Schaffer EM, Wolff LF, Pihlstrom BL, Bandt CL. Distribution of oral Haemophilus species in dental plaque from a large adult population. Infect Immun 1984;46:778-86. doi: 10.1128/iai.46.3.778-786.1984
  38. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol 2010;192:5002-17. doi: 10.1128/JB.00542-10
  39. Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 2014;111:E2875-84. doi: 10.1073/pnas.1409644111
  40. Sen Yew H, Chambers ST, Roberts SA, Holland DJ, Julian KA, Raymond NJ, Beardsley J, Read KM, Murdoch DR. Association between HACEK bacteraemia and endocarditis. J Med Microbiol 2014;63(Pt 6):892-5. doi: 10.1099/jmm.0.070060-0
  41. Tseng YC, Yang HY, Lin WT, Chang CB, Chien HC, Wang HP, Chen CM, Wang JT, Li C, Wu SF, Hsieh SC. Salivary dysbiosis in Sjögren's syndrome and a commensal-mediated immunomodulatory effect of salivary gland epithelial cells. NPJ Biofilms Microbiomes 2021;7:21. doi: 10.1038/s41522-021-00192-w
  42. Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS One 2013;8:e71227. doi: 10.1371/journal.pone.0071227
  43. Lenartova M, Tesinska B, Janatova T, Hrebicek O, Mysak J, Janata J, Najmanova L. The oral microbiome in periodontal health. Front Cell Infect Microbiol 2021;11:629723. doi: 10.3389/fcimb.2021.629723
  44. Downes J, Hooper SJ, Wilson MJ, Wade WG. Prevotella histicola sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 2008;58(Pt 8):1788-91. doi: 10.1099/ijs.0.65656-0
  45. Wescombe PA, Hale JD, Heng NC, Tagg JR. Developing oral probiotics from Streptococcus salivarius. Future Microbiol 2012;7:1355-71. doi: 10.2217/fmb.12.113
  46. Kataoka H, Taniguchi M, Fukamachi H, Arimoto T, Morisaki H, Kuwata H. Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner. Pathog Dis 2014;71:65-8. doi: 10.1111/2049-632X.12115
  47. Itano A, Maslin D, Ramani K, Mehraei G, Carpenter N, Cormack T, Saghari M, Moerland M, Troy E, Caffry W, WardwellScott L, Abel S, McHale D, Bodmer M. Clinical translation of anti-inflammatory effects of Prevotella histicola in Th1, Th2, and Th17 inflammation. Front Med (Lausanne) 2023;10:1070433. doi: 10.3389/fmed.2023.1070433
  48. Kaci G, Goudercourt D, Dennin V, Pot B, Doré J, Ehrlich SD, Renault P, Blottière HM, Daniel C, Delorme C. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol 2014;80:928-34. doi: 10.1128/AEM.03133-13
  49. MacDonald KW, Chanyi RM, Macklaim JM, Cadieux PA, Reid G, Burton JP. Streptococcus salivarius inhibits immune activation by periodontal disease pathogens. BMC Oral Health 2021;21:245. doi: 10.1186/s12903-021-01606-z
  50. Lombardo Bedran TB, Marcantonio RA, Spin Neto R, Alves Mayer MP, Grenier D, Spolidorio LC, Spolidorio DP. Porphyromonas endodontalis in chronic periodontitis: a clinical and microbiological cross-sectional study. J Oral Microbiol 2012;4. doi: 10.3402/jom.v4i0.10123
  51. Yasunaga H, Takeshita T, Shibata Y, Furuta M, Shimazaki Y, Akifusa S, Ninomiya T, Kiyohara Y, Takahashi I, Yamashita Y. Exploration of bacterial species associated with the salivary microbiome of individuals with a low susceptibility to dental caries. Clin Oral Investig 2017;21:2399-406. doi: 10.1007/s00784-016-2035-5
  52. Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021;11:929. doi: 10.1038/s41598-020-79875-x
  53. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US adults: national health and nutrition examination survey 2009-2014. J Am Dent Assoc 2018;149:576-88.e6. doi: 10.1016/j.adaj.2018.04.023
  54. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global prevalence of periodontal disease and lack of its surveillance. ScientificWorldJournal 2020;2020:2146160. doi: 10.1155/2020/2146160