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ABSTRACT

Background: Staphylococcus aureus and S. pseudintermedius are the major etiological agents of 
staphylococcal infections in humans, livestock, and companion animals. The misuse of 
antimicrobial drugs has led to the emergence of antimicrobial-resistant Staphylococcus spp., 
including methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. pseudintermedius 
(MRSP). One novel therapeutic approach against MRSA and MRSP is a peptide nucleic acid 
(PNA) that can bind to the target nucleotide strands and block expression. Previously, two 
PNAs conjugated with cell-penetrating peptides (P-PNAs), antisense PNA (ASP)-cmk and 
ASP-deoD, targeting two essential genes in S. aureus, were constructed, and their antibacterial 
activities were analyzed.
Objectives: This study analyzed the combined antibacterial effects of P-PNAs on S. aureus and 
S. pseudintermedius clinical isolates.
Methods: S. aureus ATCC 29740 cells were treated simultaneously with serially diluted ASP-
cmk and ASP-deoD, and the minimal inhibitory concentrations (MICs) were measured. The 
combined P-PNA mixture was then treated with S. aureus and S. pseudintermedius veterinary 
isolates at the determined MIC, and the antibacterial effect was examined.
Results: The combined treatment of two P-PNAs showed higher antibacterial activity than 
the individual treatments. The MICs of two individual P-PNAs were 20 and 25 μM, whereas 
that of the combined treatment was 10 μM. The application of a combined treatment 
to clinical Staphylococcus spp. revealed S. aureus isolates to be resistant to P-PNAs and S. 
pseudintermedius isolates to be susceptible.
Conclusions: These observations highlight the complexity of designing ASPs with high 
efficacy for potential applications in treating staphylococcal infections in humans and 
animals.
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INTRODUCTION

Staphylococcal infections are some of the common zoonotic diseases found in human 
and companion animal populations. Many human, livestock, and pet diseases are caused 
by Staphylococcus aureus and S. pseudintermedius. Both species are frequently isolated from 
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livestock and are found in human communities and hospitals, spreading via direct contact 
with contracted hosts or contaminated objects [1,2]. The prevalence, adaptability, and 
elicitation of antimicrobial resistance threaten public and animal healthcare. In particular, 
the emergence of methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. 
pseudintermedius (MRSP) has become a challenge in the medical field because these 
“superbugs” restrict the spectrum of available antimicrobial drugs [3]. Furthermore, the 
uncontrolled prescription and misuse of antimicrobial drugs exacerbate the emergence of 
multidrug-resistant (MDR) MRSA and MRSP [4]. Such incidences may expedite the spread of 
antibiotic resistance genes via horizontal gene transfer (HGT) [5], and there are cases where 
HGTs have occurred between Staphylococcus spp., including MRSA and MRSP [6,7]. This is 
alarming from a veterinary perspective because the number of companion animal owners has 
increased over the years, and the increased interaction between companion animals and their 
owners may increase the exposure risk to pathogenic Staphylococcus spp. and the rate of HGT 
events between pathogens.

Combined efforts to develop novel antimicrobials have been made in response to the health 
threats of antimicrobial-resistant Staphylococcus spp. One of the novel agents is the peptide 
nucleic acid (PNA), a synthetic DNA mimic that can be designed to form a triplex with 
mRNA or DNA strands. Antisense binding of PNA to the target nucleic acids silences their 
transcription or translation, preventing their expression and impeding their biological 
functions [8,9]. PNAs have been assessed as alternatives to antimicrobials designed to target 
essential genes [10,11]. PNAs are often conjugated with a cell-penetrating peptide (CPP), such 
as the KFF motif peptide and its variants, for efficient delivery across the bacterial membrane 
[12,13]. Several studies have developed PNAs to inhibit the expression of the essential genes 
in S. aureus and S. pseudintermedius [14,15]. Previously, two antisense CPP-conjugated PNAs 
(P-PNAs) were designed, antisense PNA (ASP)-cmk and ASP-deoD, targeting two essential 
genes in S. aureus: a cytidylate kinase cmk and a purine nucleoside phosphorylase deoD [16]. 
Both genes are involved in nucleotide metabolism, which is linked directly to bacterial 
homeostasis. Disrupting their expression led to cell death [17]. Both P-PNAs showed in 
vitro and in vivo antibacterial activity towards S. aureus Rosenbach ATCC 29740 (also known 
as Newbould 305) originally isolated from a cow with bovine mastitis [18]. Based on these 
observations, it was speculated that combining both P-PNAs would enhance the overall 
antibacterial activity and exert similar effects on Staphylococcus clinical isolates. This study 
examined the synergistic antibacterial effects of two P-PNAs when treated simultaneously 
and assessed their antibacterial activity towards S. aureus and S. pseudintermedius clinical 
isolates collected from veterinary origins: pigs, chickens, and dogs.

MATERIALS AND METHODS

Bacterial strains and culture conditions
S. aureus ATCC 29740 was used as the reference strain [18]. Table 1 lists the S. aureus and S. 
pseudintermedius veterinary isolates. Twenty S. aureus isolates and 10 S. pseudintermedius isolates 
were collected from various animal sources: S. aureus from either chickens or pigs and S. 
pseudintermedius from dogs. All isolates were streaked on tryptic soy agar (TSA) plates (Difco) 
and grown at 37°C for 19 h before preparing the McFarland standards.
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PNA design and synthesis
The PNA oligomers were designed to bind the translation initiation regions (TIRs) of cmk 
and deoD of S. aureus [16]. All P-PNAs were synthesized, purified, and conjugated with the 
(KFF)3K-L bacterial penetration peptide at PANAGENE, Inc. (Korea). The synthesized P-PNAs 
were dissolved in distilled water to a final concentration of 1 mM. The combined P-PNA 
mixture was prepared by mixing both P-PNAs 1:1 to a final concentration of 0.5 mM.

Determination of minimal inhibitory concentration (MIC) of PNAs against S. 
aureus ATCC 29740
The bacterial inoculum was prepared by adjusting the turbidity of the isolates in 0.9% (w/v) saline 
to a 0.5 McFarland standard. The bacterial colonies from a streaked TSA plate were resuspended 
in 0.9% (w/v) saline, and the turbidity was measured and adjusted using a nephelometer. The 
adjusted suspension (10 μL) was then transferred to 10 ml Mueller Hinton (MH) broth.

Microdilution assays were performed on a 96-well plate to determine the MICs of P-PNAs 
used in this work. The bacterial inoculum was aliquoted to wells with the following volumes: 
the initial two wells, 100 μL; the other wells, 50 μL. The initial wells were treated with the 
P-PNAs to a final concentration of 100 or 80 μM. The P-PNA-treated suspensions were then 
diluted to 1:2 until 3.125 or 2.5 μM. The plate was then sealed and incubated at 37°C. After 
4- and 19-h incubation, 5 μL of the bacterial suspensions were spotted on MH agar plates and 
further incubated at 37°C for 19 h to determine the cell viability.
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Table 1. Bacterial strains used in this study
Strains Description (Source) References
ATCC 29740 S. aureus reference strain (bovine mastitis) ATCC
PG01 S. aureus isolate (pig feces) This study
PG02 S. aureus isolate (pig feces) This study
PG03 S. aureus isolate (pig feces) This study
PG04 S. aureus isolate (pig feces) This study
PG05 S. aureus isolate (pig feces) This study
PG06 S. aureus isolate (pig feces) This study
PG07 S. aureus isolate (pig feces) This study
PG08 S. aureus isolate (pig feces) This study
PG09 S. aureus isolate (pig feces) This study
PG10 S. aureus isolate (pig feces) This study
CK01 S. aureus isolate (chicken feces) This study
CK02 S. aureus isolate (chicken feces) This study
CK03 S. aureus isolate (chicken feces) This study
CK04 S. aureus isolate (chicken feces) This study
CK05 S. aureus isolate (chicken feces) This study
CK06 S. aureus isolate (chicken feces) This study
CK07 S. aureus isolate (chicken feces) This study
CK08 S. aureus isolate (chicken feces) This study
CK09 S. aureus isolate (chicken feces) This study
CK10 S. aureus isolate (chicken feces) This study
DG01 S. pseudintermedius isolate (canine wound swab) This study
DG02 S. pseudintermedius isolate (canine wound swab) This study
DG03 S. pseudintermedius isolate (canine wound swab) This study
DG04 S. pseudintermedius isolate (canine wound swab) This study
DG05 S. pseudintermedius isolate (canine wound swab) This study
DG06 S. pseudintermedius isolate (canine wound swab) This study
DG07 S. pseudintermedius isolate (canine wound swab) This study
DG08 S. pseudintermedius isolate (canine wound swab) This study
DG09 S. pseudintermedius isolate (canine wound swab) This study
DG10 S. pseudintermedius isolate (canine wound swab) This study



Combined antimicrobial effect of two P-PNAs against S. aureus and S. 
pseudintermedius clinical isolates
The S. aureus and S. pseudintermedius veterinary isolates were precultured in MH broth at 
37°C for 19 h and diluted with fresh MH broth to obtain a bacterial concentration of 5.0 × 
104 colony-forming units/mL. The P-PNA mixture (40 μM) was then added to the bacterial 
diluents, incubated at 37°C for 4 h, and placed in ice to stop bacterial growth. For the spot 
assay, five microliters of each grown culture were dropped onto MH agar plates and incubated 
at 37°C for 19 h.

RESULTS

Synergistic antibacterial effect of the combined P-PNA treatment on S. 
aureus ATCC 29740
The antibacterial effects of ASP-cmk, ASP-deoD, and the combined P-PNA mixture against 
S. aureus ATCC 29740 were examined by treating 40 μM of P-PNAs, as determined by the 
previous study [16], and ATCC 29740 cells were incubated for 4 and 8 h. As shown in Fig. 
1A, the growth of ATCC 29740 treated with P-PNAs was inhibited. The samples treated with 
either ASP-cmk or ASP-deoD were less susceptible to growth inhibition after 8-h incubation 
than those treated with the combined P-PNA mixture. The total number of viable cells was 
also reduced by the combined treatment, followed by the ASP-cmk and ASP-deoD (Fig. 1B). 
These results validated the antibacterial effects of P-PNAs designed in previous research and 
showed that the combined treatment with P-PNAs exerts a stronger bactericidal effect.

The MICs of the tested P-PNAs were also determined by microdilution assays. The survival 
of ATCC 29740 cells after the PNA treatment was observed by spot assays. As a result, the 
individual PNA treatments revealed ASP-cmk and ASP-deoD to have MIC values of 20 and 
25 μM, respectively. By contrast, the combined treatment had a MIC value of 10 μM (Fig. 
2). Morphological observations also showed that ATCC 29740 is more susceptible to the 
combined treatment than to the individual P-PNA treatments, suggesting that combining two 
P-PNAs enhanced their antibacterial activities toward the target pathogen synergistically.
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Fig. 1. Antibacterial effects of the individual and combined P-PNAs on S. aureus ATCC 29740. Bacterial cells (McF = 0.5, 11 mL MH broth) were treated with 40 μM 
of P-PNAs individually or combined (ASP-cmk, ASP-deoD, or ASP-cmk + ASP-deoD). (A) Cells were spotted (5 μL) on MH agar plates after 4- or 8-h treatment 
and incubated at 37°C for 19 h. (B) Cells were serially diluted, spread on Luria-Bertani agar plates after 8 h treatment, and incubated at 37°C for 19 h. After 
incubation, the CFUs were counted manually. All experiments were conducted in triplicate. 
P-PNA, peptide nucleic acids conjugated with cell-penetrating peptide; MH, Mueller Hinton; ASP, antisense peptide nucleic acid; CFU, colony-forming unit.



Antibacterial activity of the P-PNA against S. aureus and S. 
pseudintermedius veterinary isolates
Previous findings and current data suggest that antisense P-PNAs designed in this study exert 
antibacterial activity toward S. aureus ATCC 29740 [16]. Next, the potential bactericidal effects 
of the combined P-PNA treatment on Staphylococcus veterinary isolates were investigated. 
Twenty S. aureus (pig and chicken) and ten S. pseudintermedius isolates (dogs) were treated 
with 40 μM P-PNA mixture for up to 19 h, and the viable cells were counted by spotting on 
MH agar plates. At 4 h post-treatment, 25 isolates were susceptible, and five S. aureus isolates 
displayed intermediate resistance to the combined treatment. At 19-h post-treatment, 18 S. 
aureus isolates were either resistant or intermediate to the treatment, unlike the reference 
strain ATCC 29740, and two isolates were susceptible (Table 2). On the other hand, all S. 
pseudintermedius isolates were susceptible to the combined P-PNA treatment (Fig. 3). These 
observations suggest that ASP-cmk and ASP-deoD can inhibit S. pseudintermedius, whereas S. 
aureus inhibition may be dependent on the strain types.

DISCUSSION

The emergence of MDR bacterial pathogens, such as MRSA and MRSP, has threatened 
human and animal healthcare, and global efforts have been made. Attempts to develop novel 
antimicrobials have also been made, but many have failed, and the potential emergence 
of drug resistance remains [19]. Scientists have searched for alternatives to overcome the 
shortcomings of conventional antimicrobials, and one of the approaches is to design ASPs 
conjugated to a CPP that can complementarily bind to RNA expressed by their targets, 
which in turn affect translation or post-transcriptional processing [8-10,12]. Previously, two 
antisense P-PNAs targeting the essential genes in S. aureus were developed: ASP-cmk and 
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Fig. 2. Minimal inhibitory concentration determination of the individual and combined P-PNAs against S. aureus 
ATCC 29740. Bacterial cells (McF = 0.5, 11 mL MH broth) were treated with 100 or 80 μM of the antisense P-PNAs 
individually or combined (ASP-cmk, ASP-deoD, or ASP-cmk + ASP-deoD). The initial mixtures were then diluted 
serially to a final concentration of 3.125 or 2.5 μM. The cells were spotted (5 μL) on MH agar plates after 4- or 19-h 
treatment and incubated at 37°C for 19 h. For the controls, ATCC 29740 cells were treated with distilled water for 
19 h and spotted on MH agar. For the blanks, sterilized MH broth was spotted. All experiments were conducted in 
triplicate, and a representative result is shown. 
P-PNA, peptide nucleic acids conjugated with cell-penetrating peptide; ASP, antisense peptide nucleic acid; MH, 
Mueller Hinton.



ASP-deoD. Their molecular mechanisms and in vivo efficiency were analyzed [16]. This study 
focused on the synergistic effects of the combined treatment with the P-PNAs.
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Table 2. Susceptibility of S. aureus and S. pseudintermedius veterinary isolates to the combined peptide nucleic 
acids conjugated with cell-penetrating peptide mixture
Isolates Susceptibility to the combined treatmenta

4 h 19 h
PG01 S R
PG02 S R
PG03 S I
PG04 I R
PG05 I R
PG06 S I
PG07 I R
PG08 S R
PG09 S R
PG10 S S
CK01 S I
CK02 S I
CK03 S S
CK04 S R
CK05 S R
CK06 I R
CK07 S R
CK08 S R
CK09 I R
CK10 S I
DG01 S S
DG02 S S
DG03 S S
DG04 S S
DG05 S S
DG06 S S
DG07 S S
DG08 S S
DG09 S S
DG10 S S
aSusceptibility relative to the untreated control: R, resistant; I, intermediate; S, susceptible.

19 h4 h

Pig

Untreated

P-PNA

Untreated

P-PNA
Chicken

Untreated

P-PNA
Dog

Fig. 3. Susceptibility of S. aureus and S. pseudintermedius veterinary isolates to the combined P-PNA treatment. 
Precultured cells (5.0 × 104 colony-forming units/mL) were treated with distilled water (untreated) or 40 μM of 
ASP-cmk + ASP-deoD (P-PNA) for 4 and 19 h, spotted (5 μL) on Mueller Hinton agar plates, and incubated at 37°C 
for 19 h. All experiments were conducted in triplicate, and a representative result is shown. 
P-PNA, peptide nucleic acids conjugated with cell-penetrating peptide.



The combined treatment with two P-PNAs inhibited S. aureus ATCC 29740 at a lower 
concentration than the treatment with the individual P-PNAs. Targeting essential genes 
for bacterial growth and survival effectively controls potential pathogens. The cmk and 
deoD enzymes are involved in the nucleotide metabolism and were confirmed as essential 
genes using allelic replacement mutagenesis [17,20]. A previous study reported that two 
antisense P-PNAs targeting cmk or deoD mRNA had high antibacterial activities to 29740 
with minor differences in the MICs [16], which is consistent with the present observation. 
The combined treatment lowered the MIC, suggesting that two P-PNAs may have improved 
the effectiveness. A few examples of combined treatments with two PNAs [21] or a PNA and 
another therapeutical agent [22,23] have been published. Combined treatment with P-PNAs 
targeting two essential genes may be an effective alternative to treating potential pathogens.

The combined treatment of S. aureus clinical isolates with two P-PNAs revealed an interesting 
result. Unlike the control strain, S. aureus veterinary isolates resisted the combined treatment. 
A previous report showed that the MICs of ASPs on human clinical isolates were not different, 
regardless of the strain types [15]. On the other hand, there are genetic and phenotypic 
differences in human and animal isolates [24,25]. In this study, the color and morphology of 
S. aureus veterinary isolates varied when grown on MH agar plates. These isolates displayed 
resistance to the P-PNA treatment to different degrees (Fig. 3). Wall teichoic acids (WTAs) 
and staphyloxanthin play essential roles in the physiology and pigmentation of bacteria. 
Different S. aureus isolates have different WTAs and staphyloxanthin compositions, conferring 
differences in the stress response, fluidity, virulence, and antimicrobial resistance [26-28]. This 
study speculates that these veterinary isolates may harbor different membrane components 
or have acquired mutations in the genes associated with the bacterial membrane that would 
confer resistance to PNAs. Antimicrobial resistance phenotypes associated with the membrane 
have been observed in S. aureus [29]. Interestingly, a positive cell-surface charge acquired by 
constant exposure to pediocin conferred Enterococcus faecalis resistance to cationic antimicrobial 
peptides [30]. As (KFF)3K is cationic, similar changes in S. aureus may confer resistance to 
P-PNAs because it would be difficult for P-PNAs to pass through a positively charged membrane 
efficiently. In addition, the uptake of antisense P-PNA was affected by the overall chemical 
composition of the outer lipopolysaccharide core in E. coli [31]. Whether the veterinary isolates 
in this study acquired such mutations that would render different WTA compositions or 
cell-surface charges is unclear, but these findings suggest that designing P-PNAs may need to 
overcome the additional complexity in the bacterial membrane physiology.

S. pseudintermedius veterinary isolates tested in this study exhibited susceptibility to combined 
P-PNA treatment, possibly because of the low MIC required for P-PNAs in S. pseudintermedius 
compared to S. aureus conferred by differences in the cell wall structures. Two previous 
studies showed that the MIC of the (KFF)3K peptide against MRSP isolates was low, 
ranging from 2 to 8 μM [14,32]. Passage across the cell wall is one of the limiting factors for 
effective PNA treatments. Moreover, although structural differences between S. aureus and S. 
pseudintermedius have not been assessed experimentally, the collective results suggest that S. 
pseudintermedius isolates are potentially more susceptible to a PNA treatment. Furthermore, 
the P-PNAs used in this study may have targeted other genes with enhanced inhibitory 
effects. In silico analysis showed that the cmk and deoD TIR sequences in S. pseudintermedius 
differ from S. aureus. In addition, there are other potential sites to which P-PNAs may bind in 
the S. pseudintermedius genome (data not shown). Whether these newly identified genes are 
essential to bacterial survival or their transcription levels are lowered by the treated P-PNAs 
is unclear. Nevertheless, the current results address the potential of applying the antisense 
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P-PNAs to S. pseudintermedius. The increase in the number of pet owners has contributed 
to the increase in contracting this potential zoonotic pathogen, and the number of dog-
to-human cases of S. pseudintermedius infections has increased in the 21st century [33,34]. 
Moreover, studies of potential HGT between MRSA and MRSP suggest that S. pseudintermedius 
is a potential human pathogen [35]. The findings show that designing P-PNAs to inhibit two 
different Staphylococcus spp. by targeting the bacterial essential genes is possible.

The application of ASPs to antimicrobial development may provide an alternative against 
the ever-growing number of MDR bacteria. On the other hand, there is a level of complexity 
in designing antisense P-PNAs to inhibit target pathogens effectively, and applications to 
clinical isolates require additional validation of the PNA efficacy. This work addresses the 
potential of treating Staphylococcus spp. with two P-PNAs simultaneously to determine the 
antibacterial effects on veterinary clinical isolates. Optimization of both CPPs and ASP 
sequences will be necessary to inhibit the target pathogens with high efficacy.
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