DOI QR코드

DOI QR Code

Clinical and inflammatory response to antiviral treatments in dogs with parvoviral enteritis

  • Nergis Ulas (Department of Internal Medicine, Faculty of Veterinary, Ataturk University) ;
  • Yunusemre Ozkanlar (Department of Internal Medicine, Faculty of Veterinary, Ondokuz Mayis University) ;
  • Seckin Ozkanlar (Department of Biochemistry, Faculty of Veterinary, Ataturk University) ;
  • Mehmet Ozkan Timurkan (Department of Virology, Faculty of Veterinary, Ataturk University) ;
  • Hakan Aydin (Department of Virology, Faculty of Veterinary, Ataturk University)
  • Received : 2023.05.23
  • Accepted : 2023.09.24
  • Published : 2024.01.31

Abstract

Background: Canine parvoviral enteritis (CPE) is a fatal disease worldwide. The treatment of CPE is based mainly on supportive and symptomatic treatment. Antiviral addition to the treatment may result in a higher survival. Objectives: This study evaluated the effects of antiviral treatments with a standardized treatment (ST) on the clinical and inflammatory response of dogs with naturally occurring CPE. Methods: Twenty-eight dogs with CPE caused by canine parvovirus type 2 were divided randomly into treatment groups. The ST group received fluid, antibiotic, antiemetic, and deworming treatments. The antiviral treatment groups received the same ST with an additional antiviral drug, recombinant feline interferon omega (rFeIFN-ω), oseltamivir (OSEL) or famciclovir (FAM). Results: Compared to the healthy control, the tumor necrosis factor-α, interleukin-1β, interferon (IFN)-α, IFN-γ, haptoglobin, and C-reactive protein values were high (p < 0.05) on day zero. At presentation, mild lymphopenia, neutropenia, and a high neutrophil to lymphocyte (LYM) ratio (NLR) were also observed. Adding rFeIFN-ω to the ST produced the best improvement in the clinical score with a decreased NLR, while leucocytes remained low and inflammatory markers stayed high on day three. The survival rates of the groups were 85.7% in ST+IFN, 71.4% in ST+OSEL, 71.4% in ST+FAM, and 57.1% in ST groups on day seven. Conclusions: Antiviral drugs may be valuable in treating CPE to improve the clinical signs and survival. In addition, the decrease in NLR in favor of LYM may be an indicator of the early prognosis before the improvement of leukocytes, cytokines, and acute phase proteins in CPE.

Keywords

Acknowledgement

This work was supported by the Scientific and Technological Research Council of Turkey - TUBITAK - under the project TOVAG 114O037.

References

  1. Mia M, Hasan M. Update on canine parvovirus infection: a review from the literature. Vet Sci: Res Rev. 2021;7:92-100. https://doi.org/10.17582/journal.vsrr/2021.7.2.92.100
  2. Singh P, Kaur G, Chandra M, Dwivedi PN. Prevalence and molecular characterization of canine parvovirus. Vet World. 2021;14(3):603-606. https://doi.org/10.14202/vetworld.2021.603-606
  3. Mazzaferro EM. Update on canine parvoviral enteritis. Vet Clin North Am Small Anim Pract. 2020;50(6):1307-1325. https://doi.org/10.1016/j.cvsm.2020.07.008
  4. Decaro N, Buonavoglia C, Barrs VR. Canine parvovirus vaccination and immunisation failures: are we far from disease eradication? Vet Microbiol. 2020;247:108760.
  5. Polat PF, Sahan A, Aksoy G, Timurkan MO, Dincer E. Molecular and restriction fragment length polymorphism analysis of canine parvovirus 2 (CPV-2) in dogs in southeast Anatolia, Turkey. Onderstepoort J Vet Res. 2019;86(1):e1-e8. https://doi.org/10.4102/ojvr.v86i1.1734
  6. Timurkan M, Oguzoglu T. Molecular characterization of canine parvovirus (CPV) infection in dogs in Turkey. Vet Ital. 2015;51(1):39-44.
  7. Favrot C, Olivry T, Dunston SM, Degorce-Rubiales F, Guy JS. Parvovirus infection of keratinocytes as a cause of canine erythema multiforme. Vet Pathol. 2000;37(6):647-649. https://doi.org/10.1354/vp.37-6-647
  8. Greene CE, Decaro N. Canine viral enteritis. In: Greene CE, editor. Infectious Diseases of the Dog and Cat. 4th ed. St. Louis: Elsevier; 2012, 67-76.
  9. Goddard A, Leisewitz AL. Canine parvovirus. Vet Clin North Am Small Anim Pract. 2010;40(6):1041-1053. https://doi.org/10.1016/j.cvsm.2010.07.007
  10. Acciacca RA, Sullivan LA, Webb TL, Johnson V, Dow SW. Clinical evaluation of hyperimmune plasma for treatment of dogs with naturally occurring parvoviral enteritis. J Vet Emerg Crit Care. 2020;30(5):525-533. https://doi.org/10.1111/vec.12987
  11. Chalifoux NV, Parker SE, Cosford KL. Prognostic indicators at presentation for canine parvoviral enteritis: 322 cases (2001-2018). J Vet Emerg Crit Care. 2021;31(3):402-413. https://doi.org/10.1111/vec.13052
  12. Eregowda CG, De UK, Singh M, Prasad H, Akhilesh , Sarma K, et al. Assessment of certain biomarkers for predicting survival in response to treatment in dogs naturally infected with canine parvovirus. Microb Pathog. 2020;149:104485.
  13. Munoz AI, Vallejo-Castillo L, Fragozo A, Vazquez-Leyva S, Pavon L, Perez-Sanchez G, et al. Increased survival in puppies affected by Canine Parvovirus type II using an immunomodulator as a therapeutic aid. Sci Rep. 2021;11(1):19864.
  14. de Mari K, Maynard L, Eun HM, Lebreux B. Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled field trial. Vet Rec. 2003;152(4):105-108. https://doi.org/10.1136/vr.152.4.105
  15. Savigny MR, Macintire DK. Use of oseltamivir in the treatment of canine parvoviral enteritis. J Vet Emerg Crit Care. 2010;20(1):132-142. https://doi.org/10.1111/j.1476-4431.2009.00404.x
  16. Fulton RW, Burge LJ. Susceptibility of feline herpesvirus 1 and a feline calicivirus to feline interferon and recombinant human leukocyte interferons. Antimicrob Agents Chemother. 1985;28(5):698-699. https://doi.org/10.1128/AAC.28.5.698
  17. Weiss RC. Synergistic antiviral activities of acyclovir and recombinant human leukocyte (alpha) interferon on feline herpesvirus replication. Am J Vet Res. 1989;50(10):1672-1677. PUBMED
  18. Mueller RS, Hartmann K. Interferon therapies in small animals. Vet J. 2021;271:105648.
  19. Gerlach M, Proksch AL, Dorfelt R, Unterer S, Hartmann K. Therapy of canine parvovirus infection - review and current insights. Tierarztl Prax Ausg K Klientiere Heimtiere. 2020;48(1):26-37. https://doi.org/10.1055/a-1020-3341
  20. Thomasy SM, Shull O, Outerbridge CA, Lim CC, Freeman KS, Strom AR, et al. Oral administration of famciclovir for treatment of spontaneous ocular, respiratory, or dermatologic disease attributed to feline herpesvirus type 1: 59 cases (2006-2013). J Am Vet Med Assoc. 2016;249(5):526-538. https://doi.org/10.2460/javma.249.5.526
  21. Filer CW, Ramji JV, Allen GD, Brown TA, Fowles SE, Hollis FJ, et al. Metabolic and pharmacokinetic studies following oral administration of famciclovir to the rat and dog. Xenobiotica. 1995;25(5):477-490. https://doi.org/10.3109/00498259509061867
  22. Alves F, Prata S, Nunes T, Gomes J, Aguiar S, Aires da Silva F, et al. Canine parvovirus: a predicting canine model for sepsis. BMC Vet Res. 2020;16(1):199.
  23. Martin V, Najbar W, Gueguen S, Grousson D, Eun HM, Lebreux B, et al. Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled challenge trial. Vet Microbiol. 2002;89(2-3):115-127. https://doi.org/10.1016/S0378-1135(02)00173-6
  24. Decaro N, Desario C, Billi M, Lorusso E, Colaianni ML, Colao V, et al. Evaluation of an in-clinic assay for the diagnosis of canine parvovirus. Vet J. 2013;198(2):504-507. https://doi.org/10.1016/j.tvjl.2013.08.032
  25. Buonavoglia C, Martella V, Pratelli A, Tempesta M, Cavalli A, Buonavoglia D, et al. Evidence for evolution of canine parvovirus type 2 in Italy. J Gen Virol. 2001;82(Pt 12):3021-3025. https://doi.org/10.1099/0022-1317-82-12-3021
  26. Butler JE, Peterman JH, Suter M, Dierks SE. The immunochemistry of solid-phase sandwich enzyme-linked immunosorbent assays. Fed Proc. 1987;46(8):2548-2556. PUBMED
  27. Hornbeck P, Winston SE, Fuller SA. Enzyme-linked immunosorbent assays (ELISA). Curr Protoc Mol Biol. 2001;Chapter 11:Unit11.2.
  28. Tang L, Zhang H, Zhang B. A note on error bars as a graphical representation of the variability of data in biomedical research: choosing between standard deviation and standard error of the mean. J Pancreatol. 2019;2(3):69-71. https://doi.org/10.1097/JP9.0000000000000024
  29. Aktas M, Ozkanlar Y, Kirbas A. An investigation on risk factors that affect parvoviral enteritis in owned dogs referred to the clinic from Erzurum province. Ataturk univ Vet Bilim Derg. 2011;6:1-8.
  30. Kelman M, Barrs VR, Norris JM, Ward MP. Canine parvovirus prevention and prevalence: veterinarian perceptions and behaviors. Prev Vet Med. 2020;174:104817.
  31. Abayli H, Aslan O, Tumer KC, Can-Sahna K, Tonbak S. Predominance and first complete genomic characterization of canine parvovirus 2b in Turkey. Arch Virol. 2022;167(9):1831-1840. https://doi.org/10.1007/s00705-022-05509-4
  32. Decaro N, Desario C, Beall MJ, Cavalli A, Campolo M, Dimarco AA, et al. Detection of canine parvovirus type 2c by a commercially available in-house rapid test. Vet J. 2010;184:373-375. https://doi.org/10.1016/j.tvjl.2009.04.006
  33. Markovich JE, Stucker KM, Carr AH, Harbison CE, Scarlett JM, Parrish CR. Effects of canine parvovirus strain variations on diagnostic test results and clinical management of enteritis in dogs. J Am Vet Med Assoc. 2012;241(1):66-72. https://doi.org/10.2460/javma.241.1.66
  34. Ishiwata K, Minagawa T, Kajimoto T. Clinical effects of the recombinant feline interferon-omega on experimental parvovirus infection in beagle dogs. J Vet Med Sci. 1998;60(8):911-917. https://doi.org/10.1292/jvms.60.911
  35. Minagawa T, Ishiwata K, Kajimoto T. Feline interferon-omega treatment on canine parvovirus infection. Vet Microbiol. 1999;69(1-2):51-53. https://doi.org/10.1016/S0378-1135(99)00087-5
  36. Peltola VT, Murti KG, McCullers JA. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 2005;192(2):249-257. https://doi.org/10.1086/430954
  37. Zhou H, Su X, Lin L, Zhang J, Qi Q, Guo F, et al. Inhibitory effects of antiviral drug candidates on canine parvovirus in F81 cells. Viruses. 2019;11(8):742.
  38. Whitehead Z, Goddard A, Botha WJ, Pazzi P. Haemostatic changes associated with fluid resuscitation in canine parvoviral enteritis. J S Afr Vet Assoc. 2020;91(0):e1-e9. https://doi.org/10.4102/jsava.v91i0.2005
  39. Armenise A, Trerotoli P, Cirone F, De Nitto A, De Sario C, Bertazzolo W, et al. Use of recombinant canine granulocyte-colony stimulating factor to increase leukocyte count in dogs naturally infected by canine parvovirus. Vet Microbiol. 2019;231:177-182. https://doi.org/10.1016/j.vetmic.2019.03.015
  40. Pekmezci D, Colak ZN. Determination of neutrophil/lymphocyte, monocyte/lymphocyte and platelet/lymphocyte ratios in dogs with occurring parvovirus infection. J Anatol Environ Anim Sci. 2021;6(4):585-591.
  41. Wang G, Mivefroshan A, Yaghoobpoor S, Khanzadeh S, Siri G, Rahmani F, et al. Prognostic value of platelet to lymphocyte ratio in sepsis: a systematic review and meta-analysis. BioMed Res Int. 2022;2022:9056363.
  42. Zheng R, Shi YY, Pan JY, Qian SZ. Decrease in the platelet-to-lymphocyte ratio in days after admission for sepsis correlates with in-hospital mortality. Shock. 2023;59(4):553-559. https://doi.org/10.1097/SHK.0000000000002087
  43. Munoz AI, Maldonado-Garcia JL, Fragozo A, Vallejo-Castillo L, Lucas-Gonzalez A, Trejo-Martinez I, et al. Altered neutrophil-to-lymphocyte ratio in sepsis secondary to canine parvoviral enteritis treated with and without an immunomodulator in puppies. Front Vet Sci. 2022;9:995443.
  44. Buonacera A, Stancanelli B, Colaci M, Malatino L. Neutrophil to lymphocyte ratio: an emerging marker of the relationships between the immune system and diseases. Int J Mol Sci. 2022;23(7):3636.
  45. Huang Z, Fu Z, Huang W, Huang K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: a meta-analysis. Am J Emerg Med. 2020;38(3):641-647. https://doi.org/10.1016/j.ajem.2019.10.023
  46. Romiszewski P, Kostro K, Lisiecka U. Effects of subclinical inflammation on C-reactive protein and haptoglobin levels as well as specific humoral immunity in dogs vaccinated against canine distemper and parvovirus. BMC Vet Res. 2018;14(1):70.
  47. McClure V, van Schoor M, Thompson PN, Kjelgaard-Hansen M, Goddard A. Evaluation of the use of serum C-reactive protein concentration to predict outcome in puppies infected with canine parvovirus. J Am Vet Med Assoc. 2013;243(3):361-366. https://doi.org/10.2460/javma.243.3.361
  48. Kocaturk M, Martinez S, Eralp O, Tvarijonaviciute A, Ceron J, Yilmaz Z. Prognostic value of serum acute-phase proteins in dogs with parvoviral enteritis. J Small Anim Pract. 2010;51(9):478-483. https://doi.org/10.1111/j.1748-5827.2010.00965.x
  49. Covin MA, Steiner JM. Measurement and clinical applications of C-reactive protein in gastrointestinal diseases of dogs. Vet Clin Pathol. 2022;50 Suppl 1(Suppl 1):29-36. https://doi.org/10.1111/vcp.13100
  50. Ozkanlar Y, Aktas M, Kaynar O, Ozkanlar S, Kirecci E, Yildiz L. Bovine respiratory disease in naturally infected calves: clinical signs, blood gases and cytokine response. Rev Med Vet (Toulouse). 2012;163:123-130.
  51. Perez L. Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys. 2019;671:196-202. https://doi.org/10.1016/j.abb.2019.07.013
  52. Schoeman JP, Goddard A, Leisewitz AL. Biomarkers in canine parvovirus enteritis. N Z Vet J. 2013;61(4):217-222. https://doi.org/10.1080/00480169.2013.776451
  53. Archer TM, Mulligan C, Narayanan L, Riggs C, Fellman C, Thomason JM, et al. Effects of oral administration of 5 immunosuppressive agents on activated T-cell cytokine expression in healthy dogs. J Vet Intern Med. 2020;34(3):1206-1213. https://doi.org/10.1111/jvim.15729
  54. Dandrieux JR, Narayanan L, Firestone S, Archer TM, Mansfield CS. Effect of immunosuppressive drugs on cytokine production in canine whole blood stimulated with lipopolysaccharide or a combination of ionomycin and phorbol 12-myristate 13-acetate. Vet Med Sci. 2019;5(2):199-205. https://doi.org/10.1002/vms3.143
  55. Deng J, Li D, Huang X, Li W, Zhao F, Gu C, et al. Interferon-γ enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway. Mol Biol Rep. 2022;49(9):8337-8347. https://doi.org/10.1007/s11033-022-07648-y