DOI QR코드

DOI QR Code

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park (College of Veterinary Medicine, Jeonbuk National University, Iksan Campus) ;
  • Eunseok Cho (Swine Science Division, National Institute of Animal Science) ;
  • Amal Senevirathne (College of Veterinary Medicine, Jeonbuk National University, Iksan Campus) ;
  • Hak-Jae Chung (Swine Science Division, National Institute of Animal Science) ;
  • Seungmin Ha (Dairy Science Division, National Institute of Animal Science) ;
  • Chae-Hyun Kim (Swine Science Division, National Institute of Animal Science) ;
  • Seogjin Kang (Dairy Science Division, National Institute of Animal Science) ;
  • John Hwa Lee (College of Veterinary Medicine, Jeonbuk National University, Iksan Campus)
  • Received : 2023.08.27
  • Accepted : 2023.11.24
  • Published : 2024.01.31

Abstract

Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Keywords

Acknowledgement

We thank Editage (www.editage.com/ac) for editing a draft of this manuscript.

References

  1. Lawson GH, Gebhart CJ. Proliferative enteropathy. J Comp Pathol. 2000;122(2-3):77-100. https://doi.org/10.1053/jcpa.1999.0347
  2. Jacobson M, Fellstrom C, Jensen-Waern M. Porcine proliferative enteropathy: an important disease with questions remaining to be solved. Vet J. 2010;184(3):264-268. https://doi.org/10.1016/j.tvjl.2009.05.010
  3. Guedes RM, Gebhart CJ. Onset and duration of fecal shedding, cell-mediated and humoral immune responses in pigs after challenge with a pathogenic isolate or attenuated vaccine strain of Lawsonia intracellularis. Vet Microbiol. 2003;91(2-3):135-145. https://doi.org/10.1016/S0378-1135(02)00301-2
  4. McOrist S, Gebhart CJ, Boid R, Barns SM. Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol. 1995;45(4):820-825. https://doi.org/10.1099/00207713-45-4-820
  5. Park S, Won G, Lee JH. An attenuated Salmonella vaccine secreting Lawsonia intracellularis immunogenic antigens confers dual protection against porcine proliferative enteropathy and salmonellosis in a murine model. J Vet Sci. 2019;20(3):e24.
  6. Roerink F, Morgan CL, Knetter SM, Passat MH, Archibald AL, Ait-Ali T, et al. A novel inactivated vaccine against Lawsonia intracellularis induces rapid induction of humoral immunity, reduction of bacterial shedding and provides robust gut barrier function. Vaccine. 2018;36(11):1500-1508. https://doi.org/10.1016/j.vaccine.2017.12.049
  7. Won G, Lee JH. Antigenic and functional profiles of a Lawsonia intracellularis protein that shows a flagellinlike trait and its immuno-stimulatory assessment. Vet Res. 2018;49(1):17.
  8. Jacobs AA, Harks F, Hazenberg L, Hoeijmakers MJ, Nell T, Pel S, et al. Efficacy of a novel inactivated Lawsonia intracellularis vaccine in pigs against experimental infection and under field conditions. Vaccine. 2019;37(15):2149-2157. https://doi.org/10.1016/j.vaccine.2019.02.067
  9. Sholto A, Lee S, Hoffman BM, Barrett AG, Ehrenberg B. Spectroscopy, binding to liposomes and production of singlet oxygen by porphyrazines with modularly variable water solubility. Photochem Photobiol. 2008;84(3):764-773. https://doi.org/10.1111/j.1751-1097.2007.00268.x
  10. Hanley KA. The double-edged sword: how evolution can make or break a live-attenuated virus vaccine. Evolution (N Y). 2011;4(4):635-643. https://doi.org/10.1007/s12052-011-0365-y
  11. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16(12):e05500.
  12. Boyen F, Haesebrouck F, Maes D, Van Immerseel F, Ducatelle R, Pasmans F. Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control. Vet Microbiol. 2008;130(1-2):1-19. https://doi.org/10.1016/j.vetmic.2007.12.017
  13. Arguello H, Sorensen G, Carvajal A, Baggesen DL, Rubio P, Pedersen K. Prevalence, serotypes and resistance patterns of Salmonella in Danish pig production. Res Vet Sci. 2013;95(2):334-342. https://doi.org/10.1016/j.rvsc.2013.04.001
  14. Arguello H, Estelle J, Zaldivar-Lopez S, Jimenez-Marin A, Carvajal A, Lopez-Bascon MA, et al. Early Salmonella Typhimurium infection in pigs disrupts microbiome composition and functionality principally at the ileum mucosa. Sci Rep. 2018;8(1):7788.
  15. Leite FLL. Microbiome and Immune Response to Salmonella enterica serovar Typhimurium and Lawsonia intracellularis Infection in Swine. Minnesota: University of Minnesota; 2018.
  16. Leite FL, Singer RS, Ward T, Gebhart CJ, Isaacson RE. Vaccination against Lawsonia intracellularis decreases shedding of Salmonella enterica serovar Typhimurium in co-infected pigs and alters the gut microbiome. Sci Rep. 2018;8(1):2857.
  17. Hewawaduge C, Senevirathne A, Sivasankar C, Lee JH. The impact of lipid A modification on biofilm and related pathophysiological phenotypes, endotoxicity, immunogenicity, and protection of Salmonella Typhimurium. Vet Microbiol. 2023;282:109759.
  18. Aganja RP, Sivasankar C, Hewawaduge C, Lee JH. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res. 2022;53(1):76.
  19. Hajam IA, Lee JH. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin. Vet Microbiol. 2017;205:117-123. https://doi.org/10.1016/j.vetmic.2017.05.021
  20. Kim SW, Moon KH, Baik HS, Kang HY, Kim SK, Bahk JD, et al. Changes of physiological and biochemical properties of Salmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelic exchange method. J Microbiol Methods. 2009;79(3):314-320. https://doi.org/10.1016/j.mimet.2009.09.025
  21. Lalsiamthara J, Lee JH. Virulence associated genes-deleted Salmonella Montevideo is attenuated, highly immunogenic and confers protection against virulent challenge in chickens. Front Microbiol. 2016;7:1634.
  22. Park S, Won G, Kim J, Kim HB, Lee JH. Potent O-antigen-deficient (rough) mutants of Salmonella Typhimurium secreting Lawsonia intracellularis antigens enhance immunogenicity and provide singleimmunization protection against proliferative enteropathy and salmonellosis in a murine model. Vet Res. 2018;49(1):57.
  23. Watson E, Clark EM, Alberdi MP, Inglis NF, Porter M, Imrie L, et al. A novel Lawsonia intracellularis autotransporter protein is a prominent antigen. Clin Vaccine Immunol. 2011;18(8):1282-1287. https://doi.org/10.1128/CVI.05073-11
  24. Hur J, Lee JH. Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. Clin Vaccine Immunol. 2011;18(2):203-209. https://doi.org/10.1128/CVI.00407-10
  25. Sukhan A, Kubori T, Galan JE. Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J Bacteriol. 2003;185(11):3480-3483. https://doi.org/10.1128/JB.185.11.3480-3483.2003
  26. Jepson MA, Kenny B, Leard AD. Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol. 2001;3(6):417-426. https://doi.org/10.1046/j.1462-5822.2001.00124.x
  27. Chen S, Liao C, Zhang C, Cheng X. Roles of the crp and sipB genes of Salmonella enterica serovar Typhimurium in protective efficacy and immune responses to vaccination in mice. Can J Vet Res. 2018;82(2):102-105.
  28. Stender S, Friebel A, Linder S, Rohde M, Mirold S, Hardt WD. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol. 2000;36(6):1206-1221. https://doi.org/10.1046/j.1365-2958.2000.01933.x
  29. Lara-Tejero M, Qin Z, Hu B, Butan C, Liu J, Galan JE. Role of SpaO in the assembly of the sorting platform of a Salmonella type III secretion system. PLoS Pathog. 2019;15(1):e1007565.
  30. Johnson R, Byrne A, Berger CN, Klemm E, Crepin VF, Dougan G, et al. The type III secretion system effector SptP of Salmonella enterica serovar typhi. J Bacteriol. 2017;199(4):e00647-e16.
  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  32. Kirthika P, Park S, Jawalagatti V, Lee JH. Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model. J Vet Sci. 2022;23(3):e41.
  33. Lalsiamthara J, Lee JH. Pathogenic traits of Salmonella Montevideo in experimental infections in vivo and in vitro. Sci Rep. 2017;7(1):46232.
  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  35. Figuero E, Sanchez-Beltran M, Cuesta-Frechoso S, Tejerina JM, del Castro JA, Gutierrez JM, et al. Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. J Periodontol. 2011;82(10):1469-1477. https://doi.org/10.1902/jop.2011.100719
  36. Leite FL, Vasquez E, Gebhart CJ, Isaacson RE. The effects of Lawsonia intracellularis, Salmonella enterica serovar Typhimurium and co-infection on IL-8 and TNFα expression in IPEC-J2 cells. Vet Microbiol. 2019;231:76-79. https://doi.org/10.1016/j.vetmic.2019.02.036
  37. Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol. 2002;184(1):224-232. https://doi.org/10.1128/JB.184.1.224-232.2002
  38. Weatherspoon-Griffin N, Yang D, Kong W, Hua Z, Shi Y. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem. 2014;289(47):32571-32582. https://doi.org/10.1074/jbc.M114.565762
  39. Obradovic MR, Wilson HL. Immune response and protection against Lawsonia intracellularis infections in pigs. Vet Immunol Immunopathol. 2020;219:109959.
  40. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A. 2005;102(26):9247-9252. https://doi.org/10.1073/pnas.0502040102
  41. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167(4):1882-1885. https://doi.org/10.4049/jimmunol.167.4.1882
  42. Wang Z, Guo G, Li Q, Li P, Li M, Zhou L, et al. Combing immunoinformatics with pangenome analysis to design a multiepitope subunit vaccine against Klebsiella pneumoniae K1, K2, K47, and K64. Microbiol Spectr. 2022;10(4):e0114822.
  43. Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79.
  44. Nogueira MG, Collins AM, Donahoo M, Emery D. Immunological responses to vaccination following experimental Lawsonia intracellularis virulent challenge in pigs. Vet Microbiol. 2013;164(1-2):131-138. https://doi.org/10.1016/j.vetmic.2013.02.004
  45. MacIntyre N, Smith DG, Shaw DJ, Thomson JR, Rhind SM. Immunopathogenesis of experimentally induced proliferative enteropathy in pigs. Vet Pathol. 2003;40(4):421-432. https://doi.org/10.1354/vp.40-4-421
  46. Riber U, Heegaard PM, Cordes H, Stahl M, Jensen TK, Jungersen G. Vaccination of pigs with attenuated Lawsonia intracellularis induced acute phase protein responses and primed cell-mediated immunity without reduction in bacterial shedding after challenge. Vaccine. 2015;33(1):156-162. https://doi.org/10.1016/j.vaccine.2014.10.084
  47. Smith DG, Mitchell SC, Nash T, Rhind S. Gamma interferon influences intestinal epithelial hyperplasia caused by Lawsonia intracellularis infection in mice. Infect Immun. 2000;68(12):6737-6743. https://doi.org/10.1128/IAI.68.12.6737-6743.2000
  48. MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, White SA, et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J Clin Invest. 2008;118(4):1553-1562. https://doi.org/10.1172/JCI33998