Acknowledgement
The authors would like to thank the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia for the assistance.
References
- Li, Z., Han, Z., & Fu, B. (2009, December). A novel method for the fingerprint image quality evaluation. In Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on (pp. 1-4). IEEE.
- Saenko, A., Polte, G., & Musalimov, V. (2012, June). Image enhancement and image quality analysis using fuzzy logic techniques. In Communications (COMM), 2012 9th International Conference on (pp. 95-98). IEEE.
- Yun, E. K., & Cho, S. B. (2006). Adaptive fingerprint image enhancement with fingerprint image quality analysis. Image and Vision Computing, 24(1), 101-110. https://doi.org/10.1016/j.imavis.2005.09.017
- Mahashwari, T., & Asthana, A. (2013). Image enhancement using fuzzy technique. International Journal of Research in Engineering Science and Technology, 2(2), 1-4.
- Selvi, M., & George, A. (2013, July). FBFET: Fuzzy based fingerprint enhancement technique based on adaptive thresholding. In Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on (pp. 1-5). IEEE.
- Syam, R., Hariadi, M., & Purnomo, M. H. (2010). Determining the Standard Value of Acquisition Distortion of Fingerprint Images Based on Image Quality. Journal of ICT Research and Applications, 4(2), 115-132.
- Matkovic, K., Neumann, L., Neumann, A., Psik, T., & Purgathofer, W. (2005). Global Contrast Factor-a New Approach to Image Contrast. Computational Aesthetics, 2005, 159-168.
- Bloch, I. (2009). Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets and Systems, 160(13), 1858-1867. https://doi.org/10.1016/j.fss.2009.01.006
- Bloch, I. (2006). Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. International Journal of Approximate Reasoning, 41(2), 77-95. https://doi.org/10.1016/j.ijar.2005.06.011
- Pahsa, A. (2006). Morphological image processing with fuzzy logic. Journal of Aeronautics and space Technologies, 2(3), 27-34.
- Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic using MATLAB (Vol. 1). Berlin: Springer.
- Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE transactions on Image Processing, 20(8), 2378-2386. https://doi.org/10.1109/TIP.2011.2109730
- Das, S., Saikia, J., Das, S., & Goni, N. (2015). A Comparative Study of Different Noise Filtering Techniques in Digital Images. International Journal of Engineering Research and General Science, 3(5), 180-191.
- Chen, Y., Dass, S. C., & Jain, A. K. (2005, July). Fingerprint quality indices for predicting authentication performance. In AVBPA (Vol. 3546, pp. 160-170).
- Zahedi, M., & Ghadi, O. R. (2015). Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation. Signal, Image and Video Processing, 9(2), 267-275. https://doi.org/10.1007/s11760-013-0436-3