DOI QR코드

DOI QR Code

Finite element formulations for free field one-dimensional shear wave propagation

  • 투고 : 2023.08.28
  • 심사 : 2024.01.10
  • 발행 : 2024.02.25

초록

Dynamic equilibrium equations for finite element analysis were derived for the free field one-dimensional shear wave propagation through the horizontally layered soil deposits with the elastic half-space. We expressed Rayleigh's viscous damping consisting of mass and stiffness proportional terms. We considered two cases where damping matrices are defined in the total and relative displacement fields. Two forms of equilibrium equations are presented; one in terms of total motions and the other in terms of relative motions. To evaluate the performance of new equilibrium equations, we conducted two sets of site response analyses and directly compared them with the exact closed-form frequency domain solution. Results show that the base shear force as earthquake load represents the simpler form of equilibrium equation to be used for the finite element method. Conventional finite element procedure using base acceleration as earthquake load predicts exact solution reasonably well even in soil deposits with unrealistically high damping.

키워드

과제정보

This work was partially supported by the "Radioactive Waste Management Program" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resources from the Ministry of Trade, Industry and Energy, Republic of Korea (Project No. 20193210100040).

참고문헌

  1. Ameri, G., Baumont, D., Shible, H., Ego, F. and Contrucci, I. (2023), "Characterizing site-specific ground motion at great depth in a low seismicity region: Challenges and perspectives for a nuclear waste repository project", Bull. Earthq. Eng., 21, 4755-4787. https://doi.org/10.1007/s10518-023-01720-z.
  2. Astroza, R., Pasten, C. and Ochoa-Cornejo, F. (2017), "Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering", Comput. Geotech., 89, 43-54. https://doi.org/10.1016/j.compgeo.2017.04.004.
  3. Chatterjee, K., Choudhury, D. and Poulos, H.G. (2015), "Seismic analysis of laterally pile under influence of vertical loading using finite element method", Comput. Geotech., 67, 172-186. https://doi.org/10.1016/j.compgeo.2015.03.004.
  4. Comtec Research (2022), SMAP-3D; Structure Medium Analysis Program, User's Manual Version 7.05, Comtec Research, Seoul, Korea.
  5. Desai, C.S. and Christian J.T. (1977), Numerical Methods in Geotechnical Engineering. Chapter 19: Soil Amplification of Earthquakes and Chapter 20: Two- and Three-Dimensional Dynamic Analyses, McGraw Hill Company, New York, NY, USA.
  6. Dikmen, S.U. and Ghaboussi, J. (1984), "Effective stress analysis of seismic response and liquation: Theory", J. Geotech. Eng. ASCE, 110(5), 628-644. https//doi.org/10.1061/(ASCE)0733-9410(1984)110:5(628).
  7. Germoso C., Duval J.L. and Chinesta, F. (2020), "Harmonicmodal hybrid reduced order model for the efficient integration of non-linear soil dynamics", Appl. Sci., 10(19), 6778. https://doi.org/10.3390/app10196778.
  8. Ghaemmaghami, A.R., Mercan, O. and Kianoush, R. (2017), "Seismic soil-structure analysis of wind turbines in frequency domain", Wind Energy, 20, 125-142. https://doi.org/10.1002/we.1995.
  9. Hardin, B.O. and Drnevich, V.P. (1972a), "Shear modulus and damping in soils: measurement and parameter effects (Terzaghi lecture)", J. Soil Mech. Found. Div. ASCE, 98(6), 603-624. https://doi.org/10.1061/JSFEAQ.0001756.
  10. Hardin, B.O. and Drnevich, V.P. (1972b), "Shear modulus and damping in soils: design equations and curves", J. Soil Mech. Found. Div. ASCE, 98(7), 667-692. https://doi.org/10.1061/JSFEAQ.0001760.
  11. Hudson, M. (1994), "Behavior of slopes and earth dams during earthquakes", Doctoral Thesis, University of California, Davis, California, USA.
  12. Hudson, M., Idriss, I.M. and Beikae, M. (1994), "User's manual for QUAD4M: A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base", University of California, Davis, CA, USA.
  13. Idriss, I.M. and Sun, J.I. (1992), "User's manual for SHAKE91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits", Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, University of California, Davis, CA, USA.
  14. Joyner, W.B. and Chen, A.T.F. (1975), "Calculation of nonlinear ground response in earthquakes", Bull. Seismol. Soc. Am., 565(5), 1315-1336. https://doi.org/10.1785/BSSA0650051315.
  15. Lai, C.G. and Rix, G.J. (1988), "Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization", Report No. GIT-CEE/GEO-98-2; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  16. Liu, G., Lian, J. and Zhao, M. (2017), "An effective approach for simulating multi-support earthquake underground motions", Bull. Earthq. Eng., 15, 4635-4659. https://doi.org/10.1007/s10518-017-0153-3.
  17. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div. ASCE, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  18. Ordonez, G.A. (2012), "SHAKE2000: A computer program for the 1-D analysis of geotechnical earthquake engineering problems", Geomotions, LLC, Lacey, WA, USA.
  19. Payan, M. (2017), "Study of small strain dynamic properties of sands and silty sands", Doctoral Dissertation, The University of New South Wales, Sydney, Australia.
  20. Payan, M., Khoshghalb, A., Senetakis, K. and Khalili, N. (2016a), "Small-strain stiffness of sand subjected to stress anisotropy", Soil Dyn. Earthq, Eng., 88, 143-151. https://doi.org/10.1016/j.soildyn.2016.06.004.
  21. Payan, M., Senetakis, K., Khoshghalib, A. and Khalili, N. (2016b), "Influence of particle shape on small-strain damping ratio of dry sands", Geotech., 66(7), 610-616. https://doi.org/10.1680/jgeot.15.T.035.
  22. Rayleigh, J. and Lindsay, R. (1945), The Theory of Sound, Dover Publications Inc., Garden City, NY, USA.
  23. Schnabel, P.B., Lysmer, J. and Seed, H.B. (1972), "SHAKE: A computer program for earthquake response analysis of horizontally layered sites", Report No. UCB/EERC-72/12; Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  24. Seed, H.B. and Idriss, I.M. (1970), "Soil moduli and damping factors for dynamic response analysis", Report No. EERC 75-29; Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  25. Seed, H.B., Wong, R.T., Idriss, I.M. and Tokimatsu, K. (1986), "Moduli and damping factors for dynamic analyses of cohesive soils", J. Geotech. Eng. ASCE, 112(11), 1016-1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016).
  26. Senetakis, K. and Payan, M. (2018), "Small strain damping ratio of sands and silty sands subjected to flexural and torsional resonant column excitation", Soil Dyn. Earthq. Eng., 114, 448-459. https://doi.org/10.1016/j.soildyn.2018.06.010.
  27. Tran, N.L., Aaqib, M., Nguyen, B.P., Nguyen, D.D., Tran, V.L. and Nguyen, V.Q. (2021), "Evaluation of seismic site amplification using 1D site response analyses at Ba Dinh Square Area, Vietnam", Adv. Civil Eng., 2021, 3919281. https://doi.org/10.1155/2021/3919281.
  28. Tsai, N.C. (1969), "Influence of local geology on earthquake ground motions", Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA.
  29. Volpini, C., Douglas, J. and Nielsen, A.H. (2021), "Guidance on conducting 2D linear viscoelastic site response analysis using a finite element code", J. Earthq. Eng., 25(6), 1153-1170. https://doi.org/10.1080/13632469.2019.1568931.
  30. Watanabe, K., Pisano, F. and Jeremic, B. (2017), "Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media", Eng. Comput., 33, 519-545. https://doi.org/10.1007/s00366-016-0488-4.
  31. Xu, C., Liu, Q., Tang, X., Sun, L., Deng, P. and Liu, H. (2023), "Dynamic stability analysis of jointed rock slopes using the combined finite discrete element method (FDEM)", Comput. Geotech., 160, 105556. https://doi.org/10.1016/j.compgeo.2023.105556.