과제정보
The authors would like to express their gratitude for the financial support from the Scientific Fund of Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2019EEEVL0202), the Science and Technology Research Project of Higher Education Institutions in Hebei Province (ZD2020157), and the Natural Science Foundation of Hebei Province(E2020201017).
참고문헌
- Amr, M.M., Manal, A.S. and Hussein, H.E. (2019), "Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges", Soil Dyn. Earthq. Eng., 116, 692-708. https://doi.org/10.1016/j.soildyn.2018.09.030.
- ASTM D3999/D3999M-11 (2013), Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus, ASTM International, West Conshohocken, PA, USA.
- ASTM D854-14 (2016), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, USA.
- ASTM D2216-19 (2019), Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, USA.
- ASTM D2937-17e2 (2018), Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method, ASTM International, West Conshohocken, PA, USA.
- ASTM D4253-16 (2019), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ASTM International, West Conshohocken, PA, USA.
- ASTM D4254-16 (2016), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM International, West Conshohocken, PA, USA.
- ASTM D4318-17 (2018), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, USA.
- ASTM D6913-04 (2009), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, PA, USA.
- Bayat, M. and Ghalandarzadeh, A. (2019), "Modified models for predicting dynamic properties of granular soil under anisotropic consolidation", Int. J. Geomech., 20(3), 04019197. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001607.
- Borden, R.H., Shao, L. and Gupta, A. (1996), "Dynamic properties of Piedmont residual soils", J. Geotech. Eng., 122(10), 813-821. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813).
- Carraro, J.A.H. and Bortolotto, M.S. (2015), "Stiffness degradation and damping of carbonate and silica sands", Frontiers in Offshore Geotechnics III, 2015, 1179-1183. https://doi.org/10.1201/b18442-177.
- Chang, L., Wu, Y.Q. and Yang, B. (2022), "Characteristics of 3D surface deformation characteristics and seismogenic fault inversion of 1976 Tangshan Ms 7.8 earthquake", Geomat. Informat. Sci. Wuhan Univ., 47(6), 916-926. https://doi.org/10.13203/j.whugis 20220159.
- Chen, W., Kong, L.W. and Zhu, J.Q. (2007), "A simple method to approximately determine the damping ratio of soils", Rock Soil Mech., 28(S1), 789-791.
- Ciancimino, A., Lanzo, G. and Alleanza, G.A. (2020), "Dynamic characterization of fine-grained soils in Central Italy by laboratory testing", Bull. Earthq. Eng., 18, 5503-5531. https://doi.org/10.1007/s10518-019-00611-6.
- Dammala, P.K., Kumar, S.S. and Krishna, A.M. (2019), "Dynamic soil properties and liquefaction potential of northeast indian soil for non-linear effective stress analysis", Bull. Earthq. Eng., 17, 2899-2933. https://doi.org/10.1007/s10518-019-00592-6.
- Darendeli, B.M. (2001), "Development of a new family of normalised modulus reduction and material damping curves", Ph.D. Dissertation, Department of Civil Engineering, The University of Texas at Austin, Austin, TX, USA.
- Doygun, O. and Brandes, H.G. (2020), "High strain damping for sands from load-controlled cyclic tests: Correlation between stored strain energy and pore water pressure", Soil Dyn. Earthq. Eng., 134, 106134. https://doi.org/10.1016/j.soildyn.2020.106134.
- Elif, O.M., Liu, J. and Niu, F. (2017), "Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles", Soil Dyn. Earthq. Eng., 101, 269-284. https://doi.org/10.1016/j.soildyn.2017.07.022.
- EPRI (1993), "Modeling of dynamic soil properties", Report; The Electric Power Research Institute, Palo Alto, CA, USA.
- Ha, P.H., Van, P.O. and Van, W.F. (2017), "Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation", Soil Dyn. Earthq. Eng., 100, 371-379. https://doi.org/10.1016/j.soildyn.2017.06.016.
- Hardin, B.O. and Black, W. (1968), "Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 94(2), 353-369. https://doi.org/10.1061/JSFEAQ.0001100.
- Hardin, B.O. and Black, W. (1969), "Closure to: Vibration modulus of normally consolidated clay", J. Soil Mech. Found. Div., 95(6), 1531-1537. https://doi.org/10.1061/JSFEAQ.0001364.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: measurement and parameter effects", J. Soil Mech. Found. Div., 6, 603-624. https://doi.org/10.1061/JSFEAQ.0001756.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div., 98(7), 667-692. https://doi.org/10.1061/JSFEAQ.0001760.
- Hsiao, D.H. and Phan, V.T. (2016), "Evaluation of static and dynamic properties of sand-fines mixtures through the state and equivalent state parameters", Soil Dyn. Earthq. Eng., 84, 134-144. https://doi.org/10.1016/j.soildyn.2016.02.006.
- Ishibashi, I. and Zhang, X.J. (1993), "Unified dynamic shear moduli anddamping ratios of sand and clay", Soil. Found., 33(1), 182-191. https://doi.org/10.3208/sandf1972.33.182.
- Jafarian, Y., Javdanian, H. and Haddad, A. (2018), "Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions", Soil. Found., 58, 172-184. https://doi.org/10.1016/j.sandf.2017.11.010.
- Jafarzadeh, F. and Sadeghi, H. (2012), "Experimental study on dynamic properties of sand with emphasis on the degree of saturation", Soil Dyn. Earthq. Eng., 32, 26-41. https://doi.org/10.1016/j.soildyn.2011.08.003.
- Kishida, T., Boulanger, R.W. and Abrahamson, N.A. (2009), "Regression models for dynamic properties of highly organic soils", J. Geotech. Geoenviron. Eng., 135(4), 533-543. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(533).
- Kishida, T. (2017), "Comparison and correction of modulus reduction models for clays and silts", J. Geotech. Geoenviron. Eng., 143(4), 04016110. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001627.
- Kravchenkoa, E., Jiankun, L. and Artem, K. (2019), "Dynamic behavior of clay modified with polypropylene fiber under freeze-thaw cycles", Transp. Geotech., 21, 1-12. https://doi.org/10.1016/j.trgeo.2019.100282.
- Lanzo, G. and Vucetic, M. (1999), "Effect of soil plasticity on damping ratio at small cyclic strains", Soil. Found., 39, 131-141. https://doi.org/10.3208/sandf.39.4_131.
- Ling, X.Z., Zhang, F. and Li, Q.L. (2015), "Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading", Soil Dyn. Earthq. Eng., 76(2), 111-121. https://doi.org/10.1016/j.soildyn.2015.02.007.
- Ma, X.Q, Li, Y.B. and Ran, Y.K. (2013), "Major active faults in lingqiu basin and the seismogenic structure of the earthquake in 1626", Seismol. Geol., 35(2), 208-221. https://doi.org/10.3969/j.issn.0253-4967.2013.02.002.
- Masing, G. (1926), Eigenspannungen und verfestigung bei messing, Proceedings of Second International Congress of Applied Mechanics, Zurich, Switzerland, September.
- Oztoprak, S. and Bolton, M.D. (2013), "Stiffness of sands through a laboratory test database", Geotech., 63, 54-70. https://doi.org/10.1680/geot.10.P.078.
- Pradeep, K.D., Adapa, M.K. and Subhamoy, B. (2017), "Dynamic soil properties for seismic ground response studies in Northeastern India", Soil Dyn. Earthq. Eng., 100, 357-370. https://doi.org/10.1016/j.soildyn.2017.06.003.
- Sas, W., Gabrys, K. and Szymanski, A. (2017), "Experimental studies of dynamic properties of quaternary clayey soils", Soil Dyn. Earthq. Eng., 95, 29-39. https://doi.org/10.1016/j.soildyn.2017.01.031.
- Seed, H.B. and Idriss, I.M. (1970), "Soil moduli and damping factors for dynamic response analyses", EERC Report No.70-10, University of California Berkeley, Berkeley, CA, USA.
- Seed, H.B. and Lee, K.L. (1966), "Liquefaction of saturated sands during cyclic loading", Soil Mech. Found. Div., 92, 105-134. https://doi.org/10.1061/JSFEAQ.0000913.
- Vardanega, P. and Bolton, M. (2013), "Stiffness of clays and silts: normalizing shear modulus and shear strain", J. Geotech. Geoenviron. Eng., 139, 1575-1589. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887.
- Vucetic, M. and Dobry, R. (1991), "Effect of soil plasticity on cyclic response", J. Geotech. Eng., 117, 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89).
- Wang, Y. and Stokoe, K.H.I.I. (2022), "Development of constitutive models for linear and nonlinear shear modulus and material damping ratio of uncemented soils", J. Geotech. Geoenviron. Eng., 148(3), 04021192. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002736.
- Xing, X.Q., Qi, B.S. and Feng, C.J. (2023), "Characteristics of surface rupture zone of 1679 Sanhe-Pinggu M8 earthquake in Xiadian fault of Beijing plain, China", J. Earth Sci. Environ., 45(5), 1257-1269. https://doi.org/10.19814/j.jese.2022.12077.
- Zhang, J., Andrus, R.D. and Juang, C.H. (2005), "Normalized shear modulus and material damping ratio relationships", J. Geotech. Geoenviron. Eng., 131(4), 453-464. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453).
- Zhang, Y., Wan, Y.G. and Zhao, Z.Y. (2023), "Determination of the Xingtai earthquake seismogenic structure based on the focal mechanism solution", China Earthq. Eng. J., 45(6), 1439-1448. https://doi.org/10.20000/j.1000-0844.20220806002.