DOI QR코드

DOI QR Code

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri (Department of Civil Engineering, National Institute of Technology) ;
  • Vikram Tati (Department of Civil Engineering, National Institute of Technology) ;
  • Rathish Kumar P (Department of Civil Engineering, National Institute of Technology) ;
  • Rajesh Kumar G (Department of Civil Engineering, National Institute of Technology)
  • Received : 2023.05.26
  • Accepted : 2023.09.15
  • Published : 2024.02.25

Abstract

Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

Keywords

Acknowledgement

The Ministry of Education, India provided support for the Post Doctoral Fellow at National Institute of Technology Warangal, where this study was carried out.

References

  1. Abdallah, A.E., Selmy, Y.M. and El-Salakawy, E.F. (2022), "Confinement characteristics of GFRP-RC circular columns under simulated earthquake loading: A numerical study", J. Compos. Constr., 26(2), 04022007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001195.
  2. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.
  3. Cervenka, V., Jendele, L. and Cervenka, J. (2021), "ATENA program documentation-Part 1", Cervenka Consulting s.r.o., Prague, Czech Republic.
  4. Chand, M.S.R., Giri, P.S.N.R., Kumar, G.R. and Kumar, P.R. (2015), "Paraffin wax as an internal curing agent in ordinary concrete", Mag. Concrete Res., 67(2), 82-88. https://doi.org/10.1680/macr.14.00192.
  5. Chand, M.S.R., Giri, P.S.N.R., Kumar, P.R., Kumar, G.R. and Raveena, C. (2016), "Effect of self-curing chemicals in self-compacting mortars", Constr. Build. Mater., 107, 356-364. https://doi.org/10.1016/j.conbuildmat.2016.01.018.
  6. Choi, Y.W., Kim, Y.J., Shin, H.C. and Moon, H.Y. (2006), "An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete", Cement Concrete Res., 36(9), 1595-1602. https://doi.org/10.1016/j.cemconres.2004.11.003.
  7. Collins, M.P. and Mitchell, D. (1997), Prestressed Concrete Structures, Prentice Hall, Englewood cliffs, NJ, USA.
  8. De Borst, R. (1986), "Non-linear analysis of frictional materials", Ph.D. Thesis, Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands.
  9. Den Uijl, J.A. and Bigaj, A.J. (1996), "A bond model for ribbed bars based on concrete confinement", HERON, 41(3), 1996.
  10. Galkovski, T., Mata-Falcon, J. and Kaufmann, W. (2023), "Stress field model for bond in reinforced concrete ties", Eng. Struct., 294, 116759. https://doi.org/10.1016/j.engstruct.2023.115712.
  11. Giri, P.S.N.R., KUMAR, G.R., Chand, M.S.R. and Kumar, P.R. (2017), "Effect of polyethylene glycol as self-curing agent in self-compacting concrete", Cement Wapno Beton, 22(1), 28-40.
  12. Goodier, C.I. (2003), "Development of self-compacting concrete", Proc. Inst. Civil Eng. Struct. Build., 156(4), 405-414. https://doi.org/10.1680/stbu.2003.156.4.405.
  13. Hou, C., Zheng, W. and Wu, X. (2020), "Structural state of stress analysis of confined concrete based on the normalized generalized strain energy density", J. Build. Eng., 31, 101321. https://doi.org/10.1016/j.jobe.2020.101321.
  14. Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327.
  15. Iiki, A., Kumbasar, N., Ozdemir, P. and Fukuta, T. (2004), "A trilinear stress-strain model for confined concrete", Struct. Eng. Mech., 18(5), 541-564. https://doi.org/10.12989/sem.2004.18.5.541.
  16. Karthik, M.M., & Mander, J.B. (2011), "Stress-block parameters for unconfined and confined concrete based on a unified stress-strain model", J. Struct. Eng., 137(2), 270-273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000294.
  17. Khan, A.U.R., Nasir, R. and Fareed, S. (2023), "Simulation and strength prediction of reinforced recycled aggregate concrete short columns", Arab. J. Sci. Eng., 48(4), 4545-4561. https://doi.org/10.1007/s13369-022-07034-7.
  18. Koksal, H.O. and Erdogan, A. (2021), "Stress-strain model for high-strength concrete tied columns under concentric compression", Struct., 32, 216-227. https://doi.org/10.1016/j.istruc.2021.02.063.
  19. Le Hoang, A. and Fehling, E. (2017), "Numerical analysis of circular steel tube confined UHPC stub columns", Comput. Concrete, 19(3), 263-273. https://doi.org/10.12989/cac.2017.19.3.263.
  20. Lee, J.H., Lee, H. and Kang, T.H.K. (2018), "Modern computer simulation for the design of concrete catenary shell structures", Comput. Concrete, 21(6), 661-667. https://doi.org/10.12989/cac.2018.21.6.661.
  21. Lin, L., Xu, J., Yuan, J. and Yu, Y. (2023), "Compressive strength and elastic modulus of RBAC: An analysis of existing data and an artificial intelligence based prediction", Case Stud. Constr. Mater., 18, e02184. https://doi.org/10.1016/j.cscm.2023.e02184.
  22. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1804).
  23. Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", Struct. J., 92(3), 311-318. https://doi.org/10.14359/1132.
  24. Mousa, M.I., Mahdy, M.G., Abdel-Reheem, A.H. and Yehia, A.Z. (2015), "Self-curing concrete types; water retention and durability", Alexandria Eng. J., 54(3), 565-575. https://doi.org/10.1016/j.aej.2015.03.027.
  25. Naeimi, N. and Moustafa, M.A. (2021), "Compressive behaviour and stress-strain relationships of confined and unconfined UHPC", Constr. Build. Mater., 272, 121844. https://doi.org/10.1016/j.conbuildmat.2020.121844.
  26. Nagashima, T., Sugano, S., Kimura, H. and Ichikawa, A. (1992), "Monotonic axial compression test on ultra-high-strength concrete tied columns", Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain, July.
  27. Ni, X., Zhao, B., Li, Y. and Hou, Y. (2023), "Predicted compressive stress-strain model for high-strength stirrup confined concrete", Struct., 52, 933-945. https://doi.org/10.1016/j.istruc.2023.04.039.
  28. Park, R., Priestley, M.N. and Gill, W.D. (1982), "Ductility of square-confined concrete columns", J. Struct. Div., 108(4), 929-950. https://doi.org/10.1061/JSDEAG.0005933.
  29. Ronanki, V.S. and Aaleti, S. (2022), "Experimental and analytical investigation of UHPC confined concrete behaviour", Constr. Build. Mater., 325, 126710. https://doi.org/10.1016/j.conbuildmat.2022.126710.
  30. Saenz, L.P. (1964), "Discussion of "Equation for the stress-strain curve of concrete" by Desayi and Krishnan", J. Am. Concrete Inst., 61, 1229-1235. https://doi.org/10.14359/7785.
  31. Saha, P., Prasad, M.L.V. and Rathish Kumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
  32. Samad, S. and Shah, A. (2017), "Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review", Int. J. Sustainab. Built Environ., 6(2), 663-674. https://doi.org/10.1016/j.ijsbe.2017.07.003.
  33. Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., Rajesh Kumar, G. and Krishna Rao, M.V. (2016), "Influence of paraffin wax as a self-curing compound in self-compacting concretes", Adv. Cement Res., 28(2), 110-120. https://doi.org/10.1680/jadcr.15.00062.
  34. Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P. and Rajesh Kumar, G. (2018), "Performance and microstructure characteristics of self-curing self-compacting concrete", Adv. Cement Res., 30(10), 451-468. https://doi.org/10.1680/jadcr.17.00154.
  35. Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X.
  36. Swamy Naga Ratna Giri, P., Rajesh Kumar, G., Sri Rama Chand, M. and Rathish Kumar, P. (2017), "Stress-strain model for tie-confined self-curing self-compacting concrete", Proc. Inst. Civil Eng. Struct. Build., 170(7), 465-480. https://doi.org/10.1680/jstbu.16.00156.
  37. Wei, H., Wu, T., Liu, X. and Zhang, R. (2020), "Investigation of stress-strain relationship for confined lightweight aggregate concrete", Constr. Build. Mater., 256, 119432. https://doi.org/10.1016/j.conbuildmat.2020.119432.
  38. Yu, Y., Zheng, Y. and Zhao, X.Y. (2021), "Mesoscale modelling of recycled aggregate concrete under uniaxial compression and tension using discrete element method", Constr. Build. Mater., 268, 121116. https://doi.org/10.1016/j.conbuildmat.2020.121116.