Acknowledgement
The Ministry of Education, India provided support for the Post Doctoral Fellow at National Institute of Technology Warangal, where this study was carried out.
References
- Abdallah, A.E., Selmy, Y.M. and El-Salakawy, E.F. (2022), "Confinement characteristics of GFRP-RC circular columns under simulated earthquake loading: A numerical study", J. Compos. Constr., 26(2), 04022007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001195.
- Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.
- Cervenka, V., Jendele, L. and Cervenka, J. (2021), "ATENA program documentation-Part 1", Cervenka Consulting s.r.o., Prague, Czech Republic.
- Chand, M.S.R., Giri, P.S.N.R., Kumar, G.R. and Kumar, P.R. (2015), "Paraffin wax as an internal curing agent in ordinary concrete", Mag. Concrete Res., 67(2), 82-88. https://doi.org/10.1680/macr.14.00192.
- Chand, M.S.R., Giri, P.S.N.R., Kumar, P.R., Kumar, G.R. and Raveena, C. (2016), "Effect of self-curing chemicals in self-compacting mortars", Constr. Build. Mater., 107, 356-364. https://doi.org/10.1016/j.conbuildmat.2016.01.018.
- Choi, Y.W., Kim, Y.J., Shin, H.C. and Moon, H.Y. (2006), "An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete", Cement Concrete Res., 36(9), 1595-1602. https://doi.org/10.1016/j.cemconres.2004.11.003.
- Collins, M.P. and Mitchell, D. (1997), Prestressed Concrete Structures, Prentice Hall, Englewood cliffs, NJ, USA.
- De Borst, R. (1986), "Non-linear analysis of frictional materials", Ph.D. Thesis, Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands.
- Den Uijl, J.A. and Bigaj, A.J. (1996), "A bond model for ribbed bars based on concrete confinement", HERON, 41(3), 1996.
- Galkovski, T., Mata-Falcon, J. and Kaufmann, W. (2023), "Stress field model for bond in reinforced concrete ties", Eng. Struct., 294, 116759. https://doi.org/10.1016/j.engstruct.2023.115712.
- Giri, P.S.N.R., KUMAR, G.R., Chand, M.S.R. and Kumar, P.R. (2017), "Effect of polyethylene glycol as self-curing agent in self-compacting concrete", Cement Wapno Beton, 22(1), 28-40.
- Goodier, C.I. (2003), "Development of self-compacting concrete", Proc. Inst. Civil Eng. Struct. Build., 156(4), 405-414. https://doi.org/10.1680/stbu.2003.156.4.405.
- Hou, C., Zheng, W. and Wu, X. (2020), "Structural state of stress analysis of confined concrete based on the normalized generalized strain energy density", J. Build. Eng., 31, 101321. https://doi.org/10.1016/j.jobe.2020.101321.
- Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327.
- Iiki, A., Kumbasar, N., Ozdemir, P. and Fukuta, T. (2004), "A trilinear stress-strain model for confined concrete", Struct. Eng. Mech., 18(5), 541-564. https://doi.org/10.12989/sem.2004.18.5.541.
- Karthik, M.M., & Mander, J.B. (2011), "Stress-block parameters for unconfined and confined concrete based on a unified stress-strain model", J. Struct. Eng., 137(2), 270-273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000294.
- Khan, A.U.R., Nasir, R. and Fareed, S. (2023), "Simulation and strength prediction of reinforced recycled aggregate concrete short columns", Arab. J. Sci. Eng., 48(4), 4545-4561. https://doi.org/10.1007/s13369-022-07034-7.
- Koksal, H.O. and Erdogan, A. (2021), "Stress-strain model for high-strength concrete tied columns under concentric compression", Struct., 32, 216-227. https://doi.org/10.1016/j.istruc.2021.02.063.
- Le Hoang, A. and Fehling, E. (2017), "Numerical analysis of circular steel tube confined UHPC stub columns", Comput. Concrete, 19(3), 263-273. https://doi.org/10.12989/cac.2017.19.3.263.
- Lee, J.H., Lee, H. and Kang, T.H.K. (2018), "Modern computer simulation for the design of concrete catenary shell structures", Comput. Concrete, 21(6), 661-667. https://doi.org/10.12989/cac.2018.21.6.661.
- Lin, L., Xu, J., Yuan, J. and Yu, Y. (2023), "Compressive strength and elastic modulus of RBAC: An analysis of existing data and an artificial intelligence based prediction", Case Stud. Constr. Mater., 18, e02184. https://doi.org/10.1016/j.cscm.2023.e02184.
- Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)07339445(1988)114:8(1804).
- Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", Struct. J., 92(3), 311-318. https://doi.org/10.14359/1132.
- Mousa, M.I., Mahdy, M.G., Abdel-Reheem, A.H. and Yehia, A.Z. (2015), "Self-curing concrete types; water retention and durability", Alexandria Eng. J., 54(3), 565-575. https://doi.org/10.1016/j.aej.2015.03.027.
- Naeimi, N. and Moustafa, M.A. (2021), "Compressive behaviour and stress-strain relationships of confined and unconfined UHPC", Constr. Build. Mater., 272, 121844. https://doi.org/10.1016/j.conbuildmat.2020.121844.
- Nagashima, T., Sugano, S., Kimura, H. and Ichikawa, A. (1992), "Monotonic axial compression test on ultra-high-strength concrete tied columns", Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain, July.
- Ni, X., Zhao, B., Li, Y. and Hou, Y. (2023), "Predicted compressive stress-strain model for high-strength stirrup confined concrete", Struct., 52, 933-945. https://doi.org/10.1016/j.istruc.2023.04.039.
- Park, R., Priestley, M.N. and Gill, W.D. (1982), "Ductility of square-confined concrete columns", J. Struct. Div., 108(4), 929-950. https://doi.org/10.1061/JSDEAG.0005933.
- Ronanki, V.S. and Aaleti, S. (2022), "Experimental and analytical investigation of UHPC confined concrete behaviour", Constr. Build. Mater., 325, 126710. https://doi.org/10.1016/j.conbuildmat.2022.126710.
- Saenz, L.P. (1964), "Discussion of "Equation for the stress-strain curve of concrete" by Desayi and Krishnan", J. Am. Concrete Inst., 61, 1229-1235. https://doi.org/10.14359/7785.
- Saha, P., Prasad, M.L.V. and Rathish Kumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
- Samad, S. and Shah, A. (2017), "Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmentally sustainable concrete: A critical review", Int. J. Sustainab. Built Environ., 6(2), 663-674. https://doi.org/10.1016/j.ijsbe.2017.07.003.
- Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., Rajesh Kumar, G. and Krishna Rao, M.V. (2016), "Influence of paraffin wax as a self-curing compound in self-compacting concretes", Adv. Cement Res., 28(2), 110-120. https://doi.org/10.1680/jadcr.15.00062.
- Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P. and Rajesh Kumar, G. (2018), "Performance and microstructure characteristics of self-curing self-compacting concrete", Adv. Cement Res., 30(10), 451-468. https://doi.org/10.1680/jadcr.17.00154.
- Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X.
- Swamy Naga Ratna Giri, P., Rajesh Kumar, G., Sri Rama Chand, M. and Rathish Kumar, P. (2017), "Stress-strain model for tie-confined self-curing self-compacting concrete", Proc. Inst. Civil Eng. Struct. Build., 170(7), 465-480. https://doi.org/10.1680/jstbu.16.00156.
- Wei, H., Wu, T., Liu, X. and Zhang, R. (2020), "Investigation of stress-strain relationship for confined lightweight aggregate concrete", Constr. Build. Mater., 256, 119432. https://doi.org/10.1016/j.conbuildmat.2020.119432.
- Yu, Y., Zheng, Y. and Zhao, X.Y. (2021), "Mesoscale modelling of recycled aggregate concrete under uniaxial compression and tension using discrete element method", Constr. Build. Mater., 268, 121116. https://doi.org/10.1016/j.conbuildmat.2020.121116.