DOI QR코드

DOI QR Code

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University) ;
  • Dichuan Zhang (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University) ;
  • Robert Fleischman (Department of Civil Engineering and Engineering Mechanics, University of Arizona) ;
  • Chang-Seon Shon (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University) ;
  • Jong Kim (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University)
  • Received : 2022.08.16
  • Accepted : 2023.09.15
  • Published : 2024.02.25

Abstract

Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.

Keywords

Acknowledgement

Nazarbayev University funded this research under Faculty Development Competitive Research Grant No. 201223FD8804. The authors would also like to thank the support for conducting the shake table test from the Precast/Prestressed Concrete Institute (PCI), the Charles Pankow Foundation, and the National Science Foundation (NSF).

References

  1. ASCE (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  2. Belleri, A., Schoettler, M.J., Restrepo, J.I. and Fleischman, R.B. (2014), "Dynamic behavior of rocking and hybrid cantilever walls in a precast concrete building", ACI Struct. J., 111(3), 661-672.
  3. Belleri, A., Torquati, M., Riva, P. and Nascimbene, R. (2015), "Vulnerability assessment and retrofit solutions of precast industrial structures", Earthq. Struct., 8(3), 801-820. http://dx.doi.org/10.12989/eas.2015.8.3.801.
  4. Biondini, F., Ferrara, L. and Toniolo, G. (2008), "Capacity design criteria for connections in precast structures", 14th World Conference on Earthquake Engineering, Beijing, China, October.
  5. Chen, Z. and Ni, C. (2021), "Seismic force-modification factors for mid-rise wood-frame buildings with shear walls using wood screws", Bull. Earthq. Eng., 19(3), 1337-1364. https://doi.org/10.1007/s10518-020-01031-7.
  6. Dal Lago, B., Bianchi, S. and Biondini, F. (2019), "Diaphragm effectiveness of precast concrete structures with cladding panels under seismic action", Bull. Earthq. Eng., 17(1), 473-495. https://doi.org/10.1007/s10518-018-0452-3.
  7. Fleischman, R.B., Farrow, K.T. and Eastman, K. (2002), "Seismic performance of perimeter lateral-system structures with highly flexible diaphragms", Earthq. Spectra, 18(2), 251-286. https://doi.org/10.1193/1.1490547.
  8. Fleischman, R.B., Restrepo, J.I., Naito, C.J., Sause, R., Zhang, D. and Schoettler, M. (2013), "Integrated analytical and experimental research to develop a new seismic design methodology for precast concrete diaphragms", J. Struct. Eng., 139(7), 1192-1204. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000734.
  9. Ghosh, S.K. (2022), "Seismic design force level for precast concrete diaphragms", PCI J., 67(2), 20-33. https://doi.org/10.15554/pcij67.2-01
  10. Ghosh, S.K., Cleland, N.M. and Naito, C.J. (2017), "Seismic design of precast concrete diaphragms", NEHRP Seismic Design Technical Brief No. 13; National Institute of Standards and Technology, Gaithersburg, MD, USA.
  11. Iverson, J.K. and Hawkins, N.M. (1994), "Performance of precast/prestressed building structures during Northridge earthquake", PCI J., 39(2), 38-56. https://doi.org/10.15554/pcij.03011994.38.55
  12. Kurama, Y.C., Sritharan, S., Fleischman, R.B., Restrepo, J.I., Henry, R.S., Cleland, N.M. and Bonelli, P. (2018), "Seismicresistant precast concrete structures: State of the art", J. Struct. Eng., 144(4), 03118001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001972.
  13. Masrom, M.A.A. and Hamid, N.H.A. (2020), "Review on the rocking wall systems as a self-centering mechanism and its interaction with floor diaphragm in precast concrete structures", Latin Am. J. Solid. Struct., 17, 1.
  14. Moehle, J.P., Hooper, J.D., Kelly, D.J. and Meyer, T.R. (2010), "Seismic design of cast-in-place concrete diaphragms, chords, and collectors", NEHRP Seismic Design Technical Brief No. 3; National Institute of Standards and Technology, Gaithersburg, MD, USA.
  15. Naito, C. and Ren, R. (2013), "An evaluation method for precast concrete diaphragm connectors based on structural testing", PCI J., 58(2), 106-118. https://doi.org/10.15554/pcij.03012013.106.118
  16. Ren, R. and Naito, C.J. (2013), "Precast concrete diaphragm connector performance database", J. Struct. Eng., 139(1), 15-27. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000598.
  17. Schoettler, M.J., Belleri, A., Dichuan, Z., Restrepo, J.I. and Fleischman, R.B. (2009), "Preliminary results of the shake-table testing for the development of a diaphragm seismic design methodology", PCI J., 54(1), 100-124. https://doi.org/10.15554/pcij.01012009.100.124
  18. Wan, G., Fleischman, R.B. and Zhang, D. (2012), "Effect of spandrel beam to double tee connection characteristic on flexure-controlled precast diaphragms", J. Struct. Eng., 138(2), 247-257. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000426.
  19. Wan, G., Zhang, D., Fleischman, R.B. and Naito, C.J. (2015), "A coupled connector element for nonlinear static pushover analysis of precast concrete diaphragms", Eng. Struct., 86, 58-71. https://doi.org/10.1016/j.engstruct.2014.12.029.
  20. Wei, G., Eatherton, M.R., Foroughi, H., Torabian, S. and Schafer, B.W. (2020), "Seismic behavior of steel BRBF buildings including consideration of diaphragm inelasticity", CFSRC R2020-04; JHU Cold-Formed Steele Research Consortium, Baltimore, MD, USA.
  21. Wood, S.L., Stanton, J.F. and Hawkins, N.M. (2000), "New seismic design provisions for diaphragms in precast concrete parking structures", PCI J., 45(1), 50-65. https://doi.org/10.15554/pcij.01012000.50.65
  22. Zhang, D. and Fleischman, R.B. (2016), "Establishment of performance-based seismic design factors for precast concrete floor diaphragms", Earthq. Eng. Struct. Dyn., 45(5), 675-698. https://doi.org/10.1002/eqe.2679.
  23. Zhang, D. and Fleischman, R. (2019), "Verification of diaphragm seismic design factors for precast concrete parking structures", Struct. Eng. Mech., 71(6), 643-656. https://doi.org/10.12989/sem.2019.71.6.643.
  24. Zhang, D., Fleischman, R.B. and Lee, D. (2021), "Verification of diaphragm seismic design factors for precast concrete office buildings", Earthq. Struct., 20(1), 13-27. https://doi.org/10.12989/eas.2021.20.1.013.
  25. Zhang, D., Fleischman, R.B. and Lee, D. (2020), "Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms", Comput. Concrete, 25(3), 273-282. https://doi.org/10.12989/cac.2020.25.3.273.
  26. Zhang, D., Fleischman, R.B., Naito, C.J. and Ren, R. (2011), "Experimental evaluation of pretopped precast diaphragm critical flexure joint under seismic demands", J. Struct. Eng., 137(10), 1063-1074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000352.
  27. Zhang, D., Fleischman, R., Naito, C.J. and Zhang, Z. (2016b), "Development of diaphragm connector elements for threedimensional nonlinear dynamic analysis of precast concrete structures", Adv. Struct. Eng., 19(2), 187-202. https://doi.org/10.1177/1369433215624319.
  28. Zhang, D., Fleischman, R. and Shon, C. (2016a), "Preliminary analytical study on seismic ductility demand of wood diaphragms", Adv. Struct. Eng., 19(1), 104-115. https://doi.org/10.1177/1369433215622874.
  29. Zhang, D., Fleischman, R.B., Schoettler, M.J., Restrepo, J.I. and Mielke, M. (2019), "Precast diaphragm response in half-scale shake table test", J. Struct. Eng., 145(5), 04019024. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002304.
  30. Zhao, W., Pang, R., Liang, S. and Zhu, X. (2022), "Experimental and numerical investigation on in-plane mechanical behavior of joint connections for discrete connected new-type precast concrete diaphragm system", Mag. Concrete Res., 74(21), 1081-1096. https://doi.org/10.1680/jmacr.21.00025.