References
- ABAQUS (2014a), ABAQUS/CAE User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA.
- ABAQUS (2014b), ABAQUS Analysis User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA.
- ABAQUS (2014c), ABAQUS User Subroutine Reference Guide, Dassault Systemes Simulia Corp., Providence, RI, USA.
- ABAQUS (2014d), ABAQUS Scripting User's Guide, Dassault Systemes Simulia Corp., Providence, RI, USA.
- Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
- Azevedo, N.M., Lemos, J.V. and de Almeida, J.R. (2008), "Influence of aggregate deformation and contact behaviour on discrete particle modelling of fracture of concrete", Eng. Fract. Mech., 75, 1569-1586. https://doi.org/10.1016/J.ENGFRACMECH.2007.06.008.
- Bazant, Z.P. (2004), "Scaling theory for quasi-brittle structural failure", Proc. Natl. Acad. Sci. USA, 101, 13400-13407. https://doi.org/10.1073/pnas.040409610.
- Bazant, Z.P. and Pang, S.D. (2007), "Activation energy based extreme value statistics and size effect in brittle and quasi-brittle fracture", Mech. Phys. Solid., 55, 91-134. https://doi.org/10.1016/j.jmps.2006.05.007.
- Bazant, Z.P. and Yu, Q. (2009), "Universal size effect law and effect of crack depth on quasi-brittle structure strength", J. Eng. Mech., 135(2), 78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78).
- Beham, H., Kuang, J.S. and Samali, B. (2018), "Parametric finite element analysis of RC wide beam-column connections", Comput. Struct., 205, 28-44. https://doi.org/10.1016/j.compstruc.2018.04.004.
- Bowyer, A. (1981). "Computing dirichlet tessellations", Comput. J., 24(2), 162-166. https://doi.org/10.1093/comjnl/24.2.162.
- Birtel, V.A.M.P. and Mark, P. (2016), "Parameterized finite element modelling of RC beam shear failure", ABAQUS User's Conf., 14, 95-108.
- Caballero, A., Lopez, C. and Carol, I. (2006a), "3D mesostructural analysis of concrete specimens under uniaxial tension", Comput. Method. Appl. Mech. Eng., 195, 7182-7195. https://doi.org/10.1016/j.cma.2005.05.052.
- Chen, H., Xu, B., Mo, Y.L. and Zhou, T. (2018), "Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings", Constr. Build. Mater., 178, 418-431. https://doi.org/10.1016/j.conbuildmat.2018.05.052.
- Chen, J., Zhang, W. and Gu, X. (2018), "Mesoscale model for cracking of concrete cover induced by reinforcement corrosion", Comput. Concrete, 22(1), 53-62. https://doi.org/10.12989/cac.2018.22.1.053.
- Du, C., Jiang, S., Qin, W., Xu, H. and Lei, D. (2012), "Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale", Comput. Concrete, 10(2), 135-147. https://doi.org/10.12989/cac.2012.10.2.1350
- Du, X., Jin, L. and Ma, G. (2014), "Numerical simulation of dynamic tensile-failure of concrete at meso-scale", Int. J. Impact Eng., 66, 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005.
- Erdem, S., Dawson, A.R. and Thom, N.H. (2012), "Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates", Cement Concrete Res., 42, 447-458. https://doi.org/10.1016/j.cemconres.2011.11.015.
- Fuller, W.B. and Thompson, S.E. (1907), "The laws of proportioning concrete", ASCE J. Transp., 59, 67-143. https://doi.org/10.1061/TACEAT.0001979.
- Gu, X., Jia, J., Wang, Z., Hong, L. and Lin, F. (2013), "Determination of mechanical parameters for elements in mesomechanical models of concrete", Front. Struct. Civil Eng., 7, 391-401. https://doi.org/10.1007/s11709-013-0225-7.
- Gulsan, M.E., Cevik, A. and Mohmmad, S.H. (2021), "Crack pattern and failure mode prediction of SFRC corbels: Experimental and numerical study", Comput. Concrete, 28(5), 507-519. https://doi.org/10.12989/cac.2021.28.5.507.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25, 299-329. https://doi.org/10.1016/0020-7683(89)90050-4.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hoover, C.G., Bazant, Z.P., Vorel, J., Wendner, R. and Hubler, M.H. (2013), "Comprehensive concrete fracture tests: description and results", Eng. Fract. Mech., 114, 92-103. https://doi.org/10.1016/j.engfracmech.2013.08.007.
- Hoover, C.G. and Bazant, Z.P. (2014), "Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests", Int. J. Fract., 187, 133-143. https://doi.org/10.1007/s10704-013-9926-0.
- Huang, Y., Yang, Z., Ren, W., Liu, G. and Zhang, C. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
- Huang, Z., Deng, W., Du, S., Gu, Z., Long, W. and Ye, J. (2021), "Effect of rubber particles and fibers on the dynamic compressive behavior of novel ultra-lightweight cement composites: Numerical simulations and metamodeling", Compos. Struct., 258, 113210. https://doi.org/10.1016/j.compstruct.2020.113210.
- MathWorks (2018), MATLAB: User's Guide (R2018a), The MathWorks, Inc, Natick, MA, USA.
- Man, H.K. and van Mier, J.G.M. (2008), "Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes", Int. J. Fract., 154, 61-72. https://doi.org/10.1007/s10704-008-9270-y.
- Panahi, H. and Genikomsou, A.S. (2022), "Comparative investigation of concrete plasticity models for nonlinear finite-element analysis of reinforced concrete specimens", Pract. Period. Struct. Des. Constr., 27(2), 04021083. https://doi.org/10.1061/(ASCE)SC.1943-5576.000067.
- Pang, S.D., Bazant, Z.P. and Le, J.L. (2008), "Statistics of strength of ceramics: Finite weakest link model and necessity of zero threshold", Int. J. Fract., 154, 131-145. https://doi.org/10.1007/s10704-009-9317-8.
- Qian, Z., Schlangen, E., Ye, G. and van Breugel, K. (2010), "3D lattice fracture model: Theory and computer implementation", Key Eng. Mater., 452, 69-72. https://doi.org/10.4028/www.scientific.net/kem.452-453.69.
- Sabetifar, H., Nematzadeh, M. and Gholampour, A. (2022), "Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression", Comput. Concrete, 29(1), 15-29. https://doi.org/10.12989/cac.2022.29.1.015.
- Sarfarazi, V., Haeri, H. and Shemirani, A.B. (2017), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 461-466. https://doi.org/10.12989/gae.2017.13.3.461.
- Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407-418. https://doi.org/10.12989/cac.2022.29.6.407.
- Skarzynski, L. and Tejchman, J. (2016), "Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography", Strain, 52, 26-45. https://doi.org/10.1111/str.12168.
- Suchorzewski, J., Tejchman, J. and Nitka, M. (2018), "Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension", Theoret. Appl. Fract. Mech., 96, 720-739. https://doi.org/10.1016/j.tafmec.2017.10.011.
- Thilakarathna, P.S.M., Kristombu Baduge, K.S., Mendis, P., Vimonsatit, V. and Lee, H. (2020), "Mesoscale modelling of concrete - A review of geometry generation, placing algorithms, constitutive relations and applications", Eng. Fract. Mech., 231, 106974. https://doi.org/10.1016/j.engfracmech.2020.106974.
- Tian, Y., Tian, Z., Jin, N., Jin, X. and Yu, W. (2018), "A multiphase numerical simulation of chloride ions diffusion in concrete using electron microprobe analysis for characterizing properties of ITZ", Constr. Build. Mater., 178, 432-444. https://doi.org/10.1016/j.conbuildmat.2018.05.047.
- Trong, N.N., Thanh, C.L., Khatir, S. and Wahab, W.A. (2021), "A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads", Comput. Concrete, 28(1), 39-53. https://doi.org/10.12989/cac.2021.28.1.039.
- Trawinski, W., Tejchman, J. and Bobinski, J. (2018), "A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray µCT images", Eng. Fract. Mech., 189, 27-50. https://doi.org/10.1016/j.engfracmech.2017.10.003.
- Wang, J., Wang, W. and Qian, X. (2019). "Progressive collapse simulation of the steel-concrete composite floor system considering ductile fracture of steel", Eng. Struct., 200, 109701. https://doi.org/10.1016/j.engstruct.2019.109701.
- Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305.
- Wang, M., Xie, Y., Long, G., Ma, C. and Zeng, X. (2019a), "Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes", Constr. Build. Mater., 221, 151-162. https://doi.org/10.1016/j.conbuildmat.2019.06.084.
- Wang, P., Gao, N., Ji, K., Stewart, L. and Arson, C. (2019b), "DEM analysis on the role of aggregates on concrete strength", Comput. Geotech., 119, 103290. https://doi.org/10.1016/j.compgeo.2019.103290.
- Xie, J., Kang, E.C., Qian, X. and Yan, J.B. (2023), "Static compressive stress-strain behaviours of normal weight concrete at Arctic low temperatures", Constr. Build. Mater., 384, 131474. https://doi.org/10.1016/j.conbuildmat.2023.131474.
- Xu, C., Qian, X., Tao, R. and Wang, R. (2022), "Strength of an improved connection for modular concrete structures without onsite casting", International Conference on Green Building, Civil Engineering and Smart City, Guilin, China, April.
- Yan, J.B., Qian, X., Liew, J.Y.R. and Zong, L. (2017), "Damage plasticity based numerical analysis on steel-concrete-steel sandwich shells used in the Arctic offshore structure", Eng. Struct., 117, 542-559. https://doi.org/10.1016/j.engstruct.2016.03.028.
- Yun, Y.M. (2021). "Numerical method for the strength of two-dimensional concrete struts", Comput. Concrete, 28(6), 621-634. https://doi.org/10.12989/cac.2021.28.6.621.
- Zhang, H., Gan, Y., Xu, Y., Zhang, S., Schlangen, E. and Savija, B. (2019), "Experimentally informed fracture modelling of interfacial transition zone at micro-scale", Cement Concrete Compos., 104, 103383. https://doi.org/10.1016/j.cemconcomp.2019.103383.
- Zhang, L., Xie, H. and Feng, J. (2022), "Mesoscale modeling and failure mechanism of concrete considering pore structures and actual aggregate shapes", Constr. Build. Mater., 353, 129133. https://doi.org/10.1016/j.conbuildmat.2022.129133.
- Zhao, C., Shi, Z. and Zhong, X. (2021), "A proposal for an approach for meso scale modeling for concrete based on rigid body spring model", Comput. Concrete, 27(3), 283-295. https://doi.org/10.12989/cac.2021.27.3.283.