Acknowledgement
LC would like to acknowledge the contribution made by AG in the work carried out for the present study.
References
- Ahmad, A., Ahmad, W., Aslam, F. and Joyklad, P. (2022), "Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques", Case Stud. Constr. Mater., 16, e00840. https://doi.org/10.1016/j.cscm.2021.e00840.
- Ahmad, A., Ahmad, W., Chaiyasarn, K., Ostrowski, K.A., Aslam, F., Zajdel, P. and Joyklad, P. (2021), "Prediction of geopolymer concrete compressive strength using novel machine learning algorithms", Polym., 13, 3389. https://doi.org/10.3390/polym13193389.
- Alacali, S. (2022), "A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming", Comput. Concrete, 30, 377-391. https://doi.org/10.12989/cac.2022.30.6.377.
- Aldred, J. and Day, J. (2012), "Is geopolymer concrete a suitable alternative to traditional concrete?", 37th Conference on Our World in Concrete & Structures, Singapore, August.
- Almashaqbeh, H.K., Irshidat, M.R., Najjar, Y. and Elmahmoud, W. (2022), "Artificial neural network modeling to predict the flexural behavior of RC beams retrofitted with CFRP modified with carbon nanotubes", Comput. Concrete, 30, 209-224. https://doi.org/10.12989/cac.2022.30.3.209.
- Aly, T. and Sanjayan, J.G. (2010), "Effect of pore-size distribution", J. Mater. Civil Eng., 22, 525-532. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:5(525)
- Anjali, R. and Venkatesan, G. (2022), "Optimization of mechanical properties and composition of M-sand and pet particle added concrete using hybrid deep neural network-horse herd optimization algorithm", Constr. Build. Mater., 347, 128334. https://doi.org/10.1016/j.conbuildmat.2022.128334.
- Calkins, M. (2009), Materials for Sustainable Sites: A Complete Guide to the Evaluation, Selection and Use of Sustainable Construction Materials, John Wiley & Sons, Hoboken, NJ, USA.
- Cao, R., Fang, Z., Jin, M. and Shang, Y. (2022), "Application of machine learning approaches to predict the strength property of geopolymer concrete", Mater., 15, 2400. https://doi.org/10.3390/ma15072400.
- Choudhary, L., Bansal, S., Kalra, M. and Dagar, L. (2022), "Mechanical evaluation of recycled aggregate mixes and its application in reclaimed asphalt pavement (RAP) stretch", Beni-Suef Univ. J. Basic Appl. Sci., 11, 127. https://doi.org/10.1186/s43088-022-00302-3.
- Choudhary, L. and Pachouri, A. (2017), "Analysis of non-engineered structure using SAP 2000", 2nd International Conference on Science, Technology and Management, New Delhi, India, September.
- Choudhary, L., Sahu, V., Dongre, A. and Tonk, A. (2023), "Macro- and microstructural durability investigations of sustainable ternary geopolymer concrete paver blocks", Eur. Chem. Bull., 12, 5474-5494. https://doi.org/10.31838/ecb/2023.12.si6.472.
- Craveiro, F., Duarte, J.P., Bartolo, H. and Bartolo, P.J. (2019), "Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0", Autom. Constr., 103, 251-267. https://doi.org/10.1016/j.autcon.2019.03.011.
- Crentsil, K.S. (2009), "Role of oxide ratios on engineering performance of fly ash geopolymer binder systems", Ceram. Eng. Sci. Proc., 29, 175-184.
- Davidovits, J. (2008), Geopolymer Chemistry and Application, Institut Geopolymere, Saint-Quentin, France.
- Davidovits, J. (1994), "High-alkali cements for 21st century concretes", Spec. Publ., 144, 383-398. https://doi.org/10.14359/4523.
- Davidovits, J. (1991), "Geopolymers: Inorganic polymeric new materials", J. Therm. Anal. Calorim., 37, 1633-1656. https://doi.org/doi.org/10.1007/bf01912193.
- Davidovits, J. and Davidovics, M. (1991), "Geopolymer: Ultra-high temperature tooling material for the manufacture of advanced composites", SAMPE, 36(2), 1939-1949.
- Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001.
- Diaz, E.I., Allouche, E.N. and Eklund, S. (2010), "Factors affecting the suitability of fly ash as source material for geopolymers", Fuel, 89, 992-996. https://doi.org/10.1016/j.fuel.2009.09.012.
- Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H.D., Tounsi, A. and Gulia, R. (2022a), "Machine learning models for predicting the compressive strength of concrete containing nano silica", Comput. Concrete, 30, 33-42. https://doi.org/10.12989/cac.2022.30.1.033.
- Garg, A., Belarbi, M., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, T. (2022b), "Predicting elemental stiffness matrix of FG nanoplates using gaussian process regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
- Garg, A., Mukhopadhyay, T., Belarbi, M.O., Chalak, H.D., Singh, A. and Zenkour, A.M. (2023a), "On accurately capturing the through-thickness variation of transverse shear and normal stresses for composite beams using FSDT coupled with GPR", Compos. Struct., 305, 116551. https://doi.org/10.1016/j.compstruct.2022.116551.
- Garg, A., Mukhopadhyay, T., Belarbi, M.O. and Li, L. (2023b), "Random forest-based surrogates for transforming the behavioral predictions of laminated composite plates and shells from FSDT to Elasticity solutions", Compos. Struct., 309, 116756. https://doi.org/10.1016/j.compstruct.2023.116756.
- Geurts, P., Ernst, D. and Wehenkel, L. (2006), "Extremely randomized trees", Mach. Learn., 63, 3-42. https://doi.org/10.1007/s10994-006-6226-1.
- Ghahremani, B. and Rizzo, P. (2022), "Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures", Comput. Concrete, 30, 225-236. https://doi.org/10.12989/cac.2022.30.3.225.
- Habibi Rad, M., Mojtahedi, M. and Ostwald, M.J. (2021), "Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis", Build., 11(9), 411. https://doi.org/10.3390/buildings11090411.
- Hermann, M., Pentek, T. and Otto, B. (2016), "Design principles for industrie 4.0 scenarios", 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, January.
- Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S.J. (2013), "Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure", Mater. Struct., 46, 361-373. https://doi.org/10.1617/s11527-012-9906-2.
- Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S. and van Deventer, J.S.J. (2014), "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cem. Concrete Compos., 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
- Jang, D., Bang, J., Yoon, H.., Seo, J., Jung, J., Jang, J.G. and Yang, B. (2022), "Deep learning-based LSTM model for prediction of long-term piezoresistive sensing performance of cement-based sensors incorporating multi-walled carbon nanotube", Comput. Concrete, 30, 301-310. https://doi.org/10.12989/cac.2022.30.5.301.
- Jong, S.C., Ong, D.E.L. and Oh, E. (2022), "A novel Bayesian inference method for predicting optimum strength gain in sustainable geomaterials for greener construction", Constr. Build. Mater., 344, 128255. https://doi.org/10.1016/j.conbuildmat.2022.128255.
- Jong, S.C., Ong, D.E.L. and Oh, E. (2021), "State-of-the-art review of geotechnical-driven artificial intelligence techniques in underground soil-structure interaction", Tunn. Undergr. Sp. Technol., 113, 103946. https://doi.org/10.1016/j.tust.2021.103946.
- Kagermann, H., Helbig, J., Hellinger, A. and Wahlster, W. (2013), "Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry. Final report of the Industrie 4.0 Working Group", Forschungsunion, Berlin, Gemany.
- Kalra, M., Kumar, G. and Choudhary, L. (2018), "Seismic response of RCC framed structure with floating columns", Int. J. Sustain. Build. Technol. Urban Dev., 9, 18-30. https://doi.org/https://doi.org/10.22712/susb.20180003.
- Kumar, S., Kumar, R. and Mehrotra, S.P. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45, 607-615. https://doi.org/10.1007/s10853-009-3934-5.
- Lee, N.K. and Lee, H.K. (2013), "Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature", Constr. Build. Mater., 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107.
- Lloyd, N. and Rangan, B. (2010), "Geopolymer concrete with fly ash", Proceedings of 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, June.
- Meena, S., Choudhary, L. and Dey, A. (2013), "Quasi-static analysis of geotextile reinforced unpaved road resting on c-φ subgrade", Procedia Soc. Behav. Sci., 104, 235-244. https://doi.org/10.1016/j.sbspro.2013.11.116.
- Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J. and Lee, K. (2020), "Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches", Constr. Build. Mater., 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581.
- Nguyen, N.H., Tong, K.T., Lee, S., Karamanli, A. and Vo, T.P. (2022), "Prediction compressive strength of cement-based mortar containing metakaolin using explainable categorical gradient boosting model", Eng. Struct., 269, 114768. https://doi.org/10.1016/j.engstruct.2022.114768.
- Partha, S.D., Pradip, N. and Prabir, K.S. (2013), "Strength and permeation properties of slag blended fly ash based geopolymer concrete", Adv. Mater. Res., 651, 168-173. https://doi.org/10.4028/www.scientific.net/AMR.651.168.
- Paruthi, S., Sharma, N., Gulia, R., Choudhary, L., Sharma, A., Belarbi, M.O., Garg, A., Li, L. and Chalak, H.D. (2023), "Thermal-based free vibration and buckling behavior of bioinspired cross- and double-helicoidal/bouligand laminated composite plates", Acta Mech. Solida Sin., 2023, 1-10. https://doi.org/10.1007/s10338-023-00415-x.
- Puligilla, S. and Mondal, P. (2013), "Cement and concrete research role of slag in microstructural development and hardening of fly ash-slag geopolymer", Cem. Concrete Res., 43, 70-80. https://doi.org/10.1016/j.cemconres.2012.10.004.
- Roy, D., Choudhary, L., Sharma, N. and Sharma, N. (2018), "Study on physical properties of quaternary cement concrete with novocon XR steel fibers", Int. J. Sustain. Build. Technol. Urban Dev., 9, 197-208. https://doi.org/https://doi.org/10.22712/susb.20180020.
- Wang, X., Liu, Y., Chen, A. and Ruan, X. (2022), "Flexural capacity assessment of precast deck joints based on deep forest", Struct., 41, 270-286. https://doi.org/10.1016/j.istruc.2022.05.009.