DOI QR코드

DOI QR Code

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu (Department of Civil Engineering, Kumoh National Institute of Technology)
  • Received : 2023.06.30
  • Accepted : 2023.08.28
  • Published : 2024.02.25

Abstract

In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

Keywords

References

  1. 1992-1-1 (2005), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, British Standard Institution, London, UK.
  2. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  3. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.Engstruct.2016.11.022.
  4. Bahij, S., Adekunle, S.K., Al-Osta, M., Ahmad, S., Al-Dulaijan, S.U. and Rahman, M.K. (2018), "Numerical investigation of the shear behavior of reinforced ultra-high-performance concrete beams", Struct. Concrete, 19(1), 305-317. https://doi.org/10.1002/SUCO.201700062.
  5. Chen, J.H., Xu, W.F., Xie, R.Z., Zhang, F.J., Hu, W.J., Huang, X.C. and Chen, G. (2017), "Sample size effect on the dynamic torsional behaviour of the 2A12 aluminium alloy", Theoret. Appl. Mech. Lett., 7(6), 317-324. https://doi.org/10.1016/j.taml.2017.09.008.
  6. Curbach, M. and Speck, K. (2008), "Ultra high performance concrete under biaxial compression", Proceedings of Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, March.
  7. Gribniak, V., Perez Caldentey, A., Kaklauskas, G., Rimkus, A. and Sokolov, A. (2016), "Effect of arrangement of tensile reinforcement on flexural stiffness and cracking", Eng. Struct., 124, 418-428. https://doi.org/10.1016/J.ENGSTRUCT.2016.06.026.
  8. Hendriks, M.A.N. and Roosen, M. (2020), "Guidelines for nonlinear finite element analysis of concrete structures", Rijkswaterstaat Technisch Document (RTD)1016:-1:2020; Rijkswaterstaat Centre for Infrastructure.
  9. Hibbitt, K. and Karlsson, B.I. (2013), "ABAQUS: User's manual", Hibbitt, Karlsson & Sorensen, Birmingham, AL, USA.
  10. Hordijk, D.A. (1992), "Tensile and tensile fatigue behaviour of concrete, experiments, modelling and analyses", Heron, 37(1), 1.
  11. Johnson, S. (2006), "Comparison of nonlinear finite element modeling tools for structural concrete", University of Illinois, Champaign, IL, USA.
  12. Jumaa, G.B. and Yousif, A.R. (2019), "Numerical modeling of size effect in shear strength of FRP-reinforced concrete beams", Struct., 20, 237-254, https://doi.org/10.1016/j.istruc.2019.04.008.
  13. Kadhim, M.M.A., Jawdhari, A., Nadir, W. and Cunningham, L.S. (2022), "Behaviour of RC beams strengthened in flexure with hybrid CFRP-reinforced UHPC overlays", Eng. Struct., 262, 114356. https://doi.org/10.1016/J.ENGSTRUCT.2022.114356.
  14. Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  15. Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8.
  16. Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15-16), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002.
  17. Lapidus, L. and Pinder, G.F. (2011), Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley& Sons, Hoboken, NJ, USA.
  18. Luu, X.B. and Kim, S.K. (2023), "Finite element modeling of interface behavior between normal concrete and ultra-high performance fiber-reinforced concrete", Build., 13(4), 950. https://doi.org/10.3390/Buildings13040950.
  19. Mansour, W., Sakr, M., Seleemah, A., Tayeh, B.A. and Khalifa, T. (2021), "Development of shear capacity equations for RC beams strengthened with UHPFRC", Comput. Concrete, 27(5), 473-487. https://doi.org/10.12989/cac.2021.27.5.473.
  20. Massicotte, B., Elwi, A.E. and MacGregor, J.G. (1990), "Tension stiffening model for planar reinforced concrete members", J. Struct. Eng. Am. Soc. Civil Eng., 116(11), 3039-3058. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3039).
  21. Prem, P.R. and Murthy, A.R. (2016), "Acoustic emission and flexural behaviour of RC beams strengthened with UHPC overlay", Constr. Build. Mater., 123, 481-492. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.033.
  22. Ramachandra Murthy, A., Karihaloo, B.L., Vindhya Rani, P. and Shanmuga Priya, D. (2018), "Fatigue behaviour of damaged RC beams strengthened with ultra high performance fibre reinforced concrete", Int. J. Fatigue, 116, 659-668. https://doi.org/10.1016/J.IJFATIGUE.2018.06.046.
  23. Da Silva, V.D. (2004), "A simple model for viscous regularization of elasto-plastic constitutive laws with softening", Commun. Numer. Method. Eng., 20(7), 547-568. https://doi.org/10.1002/CNM.700.
  24. Sun, Q., Zhu, H., Wang, G. and Fan, J. (2011), "Effects of mesh resolution on hypersonic heating prediction", Theoret. Appl. Mech. Lett., 1(2), 22001. https://doi.org/10.1063/2.1102201.
  25. Walraven, J. (2010), Model Code 2010-First Complete Draft-Volume 2: Model Code, International Federation for Structural Concrete (fib), Lausanne, Switzerland.
  26. Wang, Z.M., Huang, Y.J., Yang, Z.J., Liu, G.H. and Wang, F. (2017), "Efficient meso-scale homogenisation and statistical size effect analysis of concrete modelled by scaled boundary finite element polygons", Constr. Build. Mater., 151, 449-463. https://doi.org/10.1016/j.conbuildmat.2017.06.095.
  27. Willam, K.J. (1975), "Constitutive model for the triaxial behaviour of concrete", International Association of Bridge and Structural Engineers, Seminar on Concrete Structure Subjected to Triaxial Stresses, Paper III-1, Bergamo, Italy, May.
  28. Yang, J., Doh, J.H., Yan, K. and Zhang, X. (2022), "Experimental investigation and prediction of shear capacity for UHPC beams", Case Stud. Constr. Mater., 16, e01097. https://doi.org/10.1016/J.CSCM.2022.E01097.
  29. Zhang, Y., Li, X., Zhu, Y. and Shao, X. (2020), "Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughness-improved ultra-high performance concrete (UHPC) layer", Compos. Part B: Eng., 186, 107834. https://doi.org/10.1016/J.COMPOSITESB.2020.107834.
  30. , Y., Zhang, Y., Li, X. and Chen, G. (2021), "Finite element model to predict structural response of predamaged RC beams reinforced by toughness-improved UHPC under unloading status", Eng. Struct., 235, 112019. https://doi.org/10.1016/J.ENGSTRUCT.2021.112019.