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Due to the development of CRISPR technology, the era of ef-
fective editing of target genes has arrived. However, the off- 
target problem that occurs when recognizing target DNA due 
to the inherent nature of CRISPR components remains the big-
gest task to be overcome in the future. In this review, the 
principle of inducing such unintended off-target editing is 
analyzed from the structural aspect of CRISPR, and the methodo-
logy that has been developed to reduce off-target editing until 
now is summarized. [BMB Reports 2024; 57(1): 12-18]

INTRODUCTION

The mechanism of the CRISPR system has been identified as 
an antiviral immune response system in bacteria and archaea 
(1, 2). In the CRISPR interference step, CRISPR-Cas effectors 
operating as a guide RNA-based endonuclease induce double 
strand breaks in the target DNA sequence to remove or su-
ppress foreign invading genes (3). When CRISPR effectors, re-
programmed for target genes, are used for gene editing in cel-
lular conditions, genetic information can be changed by in-
ducing a double strand break on target DNA (4, 5). Owing to 
these characteristics, CRISPR has recently been widely applied 
in various fields such as generation of transgenic animals or 
plants (6), characterization of genes, and development of thera-
peutic biomaterials (7, 8). Although the CRISPR system is cur-
rently one of the powerful gene editing tools, the CRISPR 
effectors recognize targets based on guide RNA; consequently, 
unintended off-target mutations in target-like off-target sequen-
ces remain a common challenge (9-14). In this review, the 
cause of off-targeting is explained in terms of the CRISPR struc-
ture, and previous studies that aimed to solve the off-targeting 
challenges are summarized.

MECHANISM OF ON- /OFF-TARGET CLEAVAGE OF 
THE CRISPR SYSTEM

Structure of the CRISPR-guide RNA-target DNA complex and 
the mechanism of target DNA recognition
Numerous structural and biochemical studies have suggested 
different mechanisms by which the CRISPR system recognizes 
and binds to a target sequence to sequentially induce DNA 
cleavage (15-18). Among the mechanisms, the CRISPR-Cas9 
effector is known as a typical mono-unit endonuclease belong-
ing to Class II/type II clade (19), and the target recognition and 
cleavage mechanisms were first identified by structural studies 
of the CRISPR-Cas9-guide RNA-target DNA ternary complex 
(Fig. 1A) (16, 18). Considering the structure of Cas9, direct 
interaction with the PAM sequence (NGG) is performed using 
the PI domain of the Cas9 effector (Fig. 1A, Right inset). After 
PAM recognition, the interaction between a specific amino 
acid residue and the DNA backbone forms a phosphate lock 
loop and kinks the base immediately following the PAM base 
sequence (17, 18). Then, the guide RNA forms a complemen-
tary base-pair with the TS of the target DNA to form an 
RNA-DNA heteroduplex and an R-loop structure (Fig. 1A, Left 
inset) (18). In the heteroduplex structure, the PAM-proximal 
region close to PAM is known as a seed region that is very 
sensitive to mismatch formation between guide RNA and tar-
get DNA (13, 20, 21). In general, unintended mutations of the 
CRISPR-Cas9 effector are generated by mismatch formation in 
the PAM-distal region and permissive cleavage. On the other 
hand, the CRISPR-Cas12 system is classified as Class II/type V 
class, and the endonuclease functions of various orthologs 
with different characteristics from Cas9 have been identified 
(22, 23). Among them, the CRISPR-Cas12a effector is a type V 
prototype and has been reported as a CRISPR-Cas effector 
capable of recognizing thymine-rich PAM, unlike Cas9 (24). In 
terms of the ternary structure, Cas12a recognizes PAM by di-
rect base contact and structure-based recognition of the entire 
PAM region, which is different from the Cas9 pattern (Fig. 1B, 
Left inset) (25-27). However, guide RNA induces heteroduplex 
by forming a complementary base-pair with TS of target DNA 
in an almost similar way (Fig. 1B, Right inset). According to 
the currently reported results, Cas12a is known to have a seed 
region that is more susceptible to formation of a mismatch 
between the guide RNA and the target strand DNA of the 
PAM-proximal region (28-30). The Cas12a effector is tolerant 
only to mismatch formation in regions far from the PAM, and 
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Fig. 1. Mechanisms of target and off-target DNA recognition and cleavage of CRISPR-Cas effectors. (A) Top: Schematic diagram of the 
structure and full domain of the CRISPR-Cas9 protein. In the figure, each inset represents the interaction between the Cas9 domain and 
PAM distal region (left inset) and the PAM proximal region (right inset) within the guide RNA-DNA heteroduplex. Bottom: Schematic 
diagram of the interaction between guide RNA-target DNA heteroduplex and CRISPR-Cas9 protein. (B) Top: Schematic diagram of the 
structure and full domain of the CRISPR-Cas12a protein. In the figure, each inset represents the interaction between the Cas12a domain 
and PAM proximal region (left inset) and PAM distal region (right inset) within the crRNA-DNA heteroduplex. Bottom: Schematic diagram 
of the interaction between the guide RNA-target DNA heteroduplex and the CRISPR-Cas12a protein. NTS: non-target strand, TS: target 
strand, REC: Recognition domain, RuvC: RuvC domain, PI: PAM interaction domain, WED: Wedge domain, Nuc: Nuclease domain. The 
structures (A, B) are obtained from Protein Data Bank (PDB) and molecular images of SpCas9 (A, PDB: 7QQS) and FnCas12a (B, PDB: 
6I1K) were illustrated using PyMOL software (The PyMOL Molecular Graphics System, Version 2.5.4 Schrödinger, LLC.). (C) Schematic 
diagram of the cleavage mechanism of CRISPR-Cas9 (Top) and Cas12a (Bottom) effectors for on-target and off-target DNA. Red arrowhead: 
cleavage of DNA. Red triangles: Mismatched sequence between guide RNA and target DNA. Images were created with BioRender.com.

relatively few off-target mutations are detected compared to 
Cas9. In addition, effectors such as Cas12b (31-33), Cas12f 
(34-36), and Cas12m (37), for which guide RNA-based target 
recognition was recently identified, also show the same target 
recognition properties as the Cas12a effector. This shows that 
the Cas12 family can be more advantageous than the Cas9 
family for the accuracy of target DNA recognition during ge-
nome editing in various living organisms.

Target cleavage mechanisms of Cas9 and Cas12 for 
differential off-target effects
Single-molecule-level studies have explained how CRISPR ef-
fectors search for target sequences within genes and the me-
chanism of R-loop formation and cleavage following target 
binding (38, 39). In the CRISPR-Cas9 system, the Cas9 effector 
is attached to the PAM sequence (dual Guanines) through a 
searching process at the 1d-3d level and induces stable bind-

ing at the target sequence complementary to the guide RNA 
(Fig. 1C, Top) (17, 40). When a Cas9 structure that is favorable 
to DNA cleavage is formed, a double strand break is induced 
on the target DNA using two cleavage domains (RuvC and 
HNH domains). In the CRISPR-Cas12 system, unlike the Cas9, 
after the PAM search and target sequence binding process on 
the target gene, NTS and TS are sequentially cleaved using one 
cleavage domain (RuvC) (Fig. 1C, Bottom) (30). The difference 
in the target DNA cleavage method indicates that the Cas12 
and Cas9 effectors form different types of structures during the 
cleavage of the nucleotide sequence in the various off-target 
sites (41); thus, the off-target effects can be very different. In 
other words, in a mismatch formation within the guide RNA- 
target DNA heteroduplex, each gene may show a different off- 
target cleavage profile according to the different structures fa-
vorable to cleavage induction.
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Fig. 2. Methods for verifying off-target sites of gene editing of the 
CRISPR system. (A) Methods of guide RNA accuracy verification by 
in-silico approach. For the target sequence of a specific guide RNA, 
database-based similar off-target candidates are previously investi-
gated, and whether off-target mutations are actually occur is con-
firmed in cell level. (B) Top: Methods for detecting intracellular off- 
target sites of CRISPR effectors. Using the CRISPR system, DNA 
double strand break is induced at every on-/off-target sites within 
the cell, captured in various ways, the total number and patterns 
are investigated. Bottom: Cell-free off-target detection methods of 
CRISPR effectors. After extracting genomic DNA from target cells, 
induce DNA double strand break at each on-/off-target sites using 
the CRISPR system, capture it in various ways, and investigate the 
entire number and patterns. Images were created with BioRender.com.

METHODS TO OVERCOME OFF-TARGET EFFECTS IN 
THE CRISPR SYSTEM

Since CRISPR effectors recognizes targets based on guide RNA, 
mutations in target-like off-target sequences are common. To 
minimize off-target instances, two methodologies can be ap-
plied. The first method involves designing an optimal guide 
RNA that minimizes off-target mutations in vivo by using a 
database-based in-silico method. The second method involves 
constructing a universal CRISPR effector that operates precisely 
on a target sequence. This chapter introduces these methodo-
logies.

Design and selection of highly precise guide RNAs for CRISPR 
effectors 
Minimizing off-target effects with in-silico based prediction: A 
method using the in-silico method to design and select guide 
RNAs to minimize off-targeting was the first to be studied 
among methods for inducing precise gene editing for various 
endogenous targets (Fig. 2A) (42, 43). This method investigates 
all the possible off-target candidates similar to target sequences 
in the whole genome based on open database sources and 
suggests the best-fit guide RNA with no off-target candidates by 
comparing the degree of similarity with the genuine target 
sequence. In addition to this prediction approach, a method 
for verifying the selected optimal guide RNA candidates with 
high accuracy at the actual cell level has been reported (44).
Development of the off-target detection methodologies in 
living systems: In addition to systems that use databases to 
enumerate off-target candidates, methodologies that experimen-
tally detect actual off-targets are gradually developing. They 
include GUIDE-seq (45), BLISS (46), BLESS (47), SITE-seq (48), 
IDLV (49), CasKAS (50), GUIDE-tag (51), HTGTS (52), and Dis-
cover-seq (53). The methods can perform whole genome off- 
target analysis in an unbiased manner to find the specific guide 
RNA-based CRISPR effectors targeting the actual intracellular 
genome (Fig. 2B, Top). On the other hand, technologies such 
as CIRCLE-seq (54), Dignome-seq (55), SITE-seq (48), and Extru- 
seq (56), which extract and analyze genomic DNA outside cells, 
can detect off-target candidates with considerable accuracy 
(Fig. 2B, Bottom). 

Development of highly precise CRISPR effectors
Protein engineering: Due to the unique characteristics of 
CRISPR’s components, most CRISPR-based systems are suscep-
tible to off-target activities. There have been efforts to minimize 
off-target challenges and improve target specificity of the clas-
sical CRISPR-Cas9 including modifying PAM to extend target-
ing range (e.g., xCas9 (3.7) (57) and SpCas9-NG (58)), and 
introducing substitutions that limit off-target interactions (e.g., 
SpCas9-HF1 (59), eSpCas9 (60), HeF-SpCas9 (61), EvoSpCas9 
(62), and HypaCas9 (63)). When engineering was introduced 
into these CRISPR-Cas proteins, mutants that induce weak 
binding to off-target DNA were modified by changing the 

amino acid residues in direct contact with the target DNA into 
neutrally charged forms (Fig. 3A) (59-61) or by introducing 
random mutation (62). When target specificity is improved 
through protein engineering, target specificity tends to increase 
in a wide range for various targets. In the case of mutants that 
induce weak binding to the whole target DNA, the part where 
the on-target efficiency is also weakened remains a challenge 
to solve in the future. In addition, it is pointed out as a disad-
vantage that requires optimization through specialized engineer-
ing according to each CRISPR effector.
Guide RNA engineering: A guide RNA can effectively control 
the binding of target DNA. The CRISPR system can bind on- 
and off-target DNA through a stabilized heteroduplex forma-
tion between guide RNA and target DNA (64). Recently, there 
have been reports of enhancing the target specificity of the 
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Fig. 3. Methods of improving target specificity of genome editing 
through the improvement of CRISPR systems and the use of new 
gene editing tools. (A) Method for improving target specificity by 
CRISPR-Cas9 protein engineering. Top: In the case of eSpCas9, the 
(+) charged residue that binds to the non-target strand of the target 
DNA is replaced with a neutrally charged amino acid (K848A, 
K1003A, R1060A). Bottom: In the case of SpCas9-HF1, the (+) charged 
residue that binds to the target strand of the target DNA is re-
placed with neutrally charged amino acids (N497A, R661A, Q695A, 
Q926A). (B) A method for improving target specificity by guide 
RNA engineering of CRISPR-Cas effectors. In the chimeric RNA-DNA 
that binds to the target DNA, blue region in protospacer represents 
RNA and red region represents DNA, respectively. (C) Method for 
improving target specificity using Prime editor. Depending on the 
PE2, PE3, and PE3b methods, different efficiencies and types of 
prime editing were induced on the target DNA. (D) A family tree 
of new types of gene editing tools (TnpB, Fanzor). Blue region 
indicates PBS + RTT sequence of sense DNA and pink boxed 
region indicates the protospacer  of second guide RNA for anti-sense 
DNA nick generation, respectively.  RTase: Reverse transcriptase, 
pegRNA: prime editing guide RNA. Schematic showing evolution 
from TnpB with the simplest functional domain to the CRISPR- 
Cas12 (Top) and the Fanzor (Bottom) effectors, respectively. Images 
were created with BioRender.com.

CRISPR-Cas9 (65) and CRISPR-Cas12 (66) effectors by inducing 
a change in the hybridization energy formed within the hetero-
duplex (Fig. 3B). Previous studies suggested a mechanism that 
is sensitive to mismatch formation caused by off-target binding 
in which hybridization energy was changed by introducing 
partially substituted DNA to guides composed of complete RNA. 
Notably, the genome editing efficiency does not decrease and 

tends to be normally induced for the on-target that induces a 
perfect match between the guide with optimized DNA substi-
tution and the target DNA. In addition to DNA substitution for 
guide RNA, many types of guide RNA engineering have been 
attempted to improve target specificity for various cellular sys-
tems (67-71). The advantage of engineering guide RNA com-
pared to protein engineering is that it is easy to screen effective 
guides. However, such engineering has the disadvantage of 
having to be produced through expensive synthesis depending 
on the CRISPR effector.
Enhanced specificity with prime editing: Prime editing, the 
latest tool in the arsenal of CRISPR-based genome engineering 
technology, has enabled targeted and versatile gene editing in 
various living organisms (72-80). It can facilitate numerous 
modifications (insertions, deletions, substitutions) of the DNA 
based on the reverse transcriptase activity without deleterious 
DNA double stranded breaks. Since prime editing uses prime 
editing guide RNA (pegRNA) that is simultaneously annealed 
to the target strand and non-target strand for target recognition 
and RT operation, it is very sensitive to mismatches caused by 
off-target binding (Fig. 3C, Left) (81). The recent prime editing 
technology has been shown to achieve a target specificity that 
is relatively superior to that of inducing indels by DNA clea-
vage with the existing CRISPR system (82, 83). However, the 
disadvantage of the current prime editing technology is that, in 
vivo, the overall gene editing efficiency is low for various gene 
sites, and byproduct indels are generated when an advanced 
PE3 system is used to overcome low efficiency (Fig. 3C, Right) 
(84, 85). In the near future, if the editing efficiency of the 
prime editing technology itself is increased, sophisticated and 
diverse gene editing for living organisms may be possible. 
Other CRISPR-Cas12 orthologs and OMEGA endonuclease 
which have superior accuracy for genome editing: As research 
on the CRISPR-Cas12 family is progressing, Cas12 orthologs of 
various forms and functions are being discovered (23, 86-90). 
Since these Cas12 orthologs are generally sensitive to mis-
matches during heteroduplex formation, it has been reported 
to have excellent specificity with little off-target activity. In 
addition, very small ωRNA-guided endonucleases with proper-
ties very similar to those of the Cas12 ortholog and containing 
only the core domain of the Cas12 family were discovered 
(Fig. 3D) (91, 92). TnpB and Fanzor endonuclease of the 
OMEGA family are components of IS200/IS605 transposons 
whose functions have been newly studied in prokaryotes or 
eukaryotes. Also, OMEGA endonucleases such as IscB, for 
which gene editing research has been actively conducted 
recently, also shows high target specificity and promising 
editing results for applicability in human systems (93). In the 
future, these emerging endonucleases are expected to be 
widely applied as gene editing tools due to their accuracy. 

CONCLUSIONS AND PERSPECTIVE 

Since the mechanism of operation of the CRISPR-Cas9 system 
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was identified, many types of CRISPR-based technologies have 
been developed and applied in biological systems. The off- 
target problem caused by the CRISPR effectors exposed in pre-
vious studies remains a challenge to overcome in the future. 
Fortunately, the new RNA-guided endonucleases that are 
excellent in target specificity, such as Cas12 and the OMEGA 
system, are continuously being discovered in de novo form 
and their DNA editing functions are identified. The off-target 
detection methods for these endonucleases, which are conti-
nuously being developed, together with the existing endonu-
clease engineering technology, provide a basis for the develop-
ment of accurate genome editing technology in the future. 
These bioengineering methods will become a foundation for 
approaches that can safely and effectively induce genome 
editing.
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