DOI QR코드

DOI QR Code

Hydration characteristics of Portland blast-furnace slag cement mortar using sulfuric acid neutralized liquid red mud

황산 중화 액상레드머드를 사용한 고로슬래그 시멘트 모르타르의 수화 특성

  • Kang, Suk-Pyo (Dept. of Architectural Engineering, woosuk University) ;
  • Park, Kyu-Eun (Dept. of Architectural Engineering, woosuk University) ;
  • Kim, Sang-jin (Dept. of Architectural Engineering, woosuk University)
  • Received : 2023.09.11
  • Accepted : 2023.12.20
  • Published : 2024.01.30

Abstract

In this paper, liquid red mud and sulfuric acid neutralized liquid red mud were manufactured to recycle red mud sludge, a by-product of the aluminum manufacturing process, and applied to slag cement mortar to examine the possibility of its use as a building material. Liquid red mud and sulfuric acid neutralization As a result of replacing liquid red mud with slag cement mortar, it was found to have a positive effect by shortening the initial setting time and improving initial strength. In particular, when sulfuric acid is added to red mud, it reacts with NaOH to produce a compound in the form of Na2(SO4)3, which acts as a factor in reducing the rapid setting phenomenon of slag cement mortar added with sulfuric acid-neutralized liquid red mud, reducing the 28-day strength. The results showed higher strength than slag cement mortar added with liquid red mud. In the XRD analysis results, Xonotlite and Gismondite were identified as the new A peak and Gismondite as the B peak, which appeared to affect the initial compressive strength results. Therefore, it is believed that sulfuric acid neutralization liquid red mud using red mud sludge has high utility in the construction industry.

Keywords

Acknowledgement

이 논문은 2022년 중소기업기술정보진흥원 중소벤처기업부의 구매조건부신제품개발사업(과제번호: S3303468)과 2021년 정부(국토교통부)의 재원으로 국토교통기술진흥원(과제번호: 22TBIP-C160747-02) 및 2023년 대한민국 과학기술정보통신부와 한국연구재단(과제번호: RS-2023-00278657)의 지원을 받아 수행된 연구임.

References

  1. Lee, H. Y. (2007). Effect of blast furnace slag matrix by alkali activator and sulfate activator. Master's thesis, Chonbuk National University, 54.
  2. Kang, H. J. (2011). A Study on the Development of Systematic Model for Sustainable Building Assessment Tools. Doctoral thesis, Chung-Ang University, 121.
  3. Ha, J. H., Ha, G. J., & Yi, D. R. (2017). Performance Evaluation for Alkali-Activated Slag Concrete Bricks using the Blast Furnace Slag and Recycled Fine Aggregate. journal of the regional association of architectural institute of korea, 19(3), 127-133.
  4. Li, J., Xu. L., Sun, P., Zhai, P., Chen, X., Zhang, H., & Zhu, W. (2017). Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chemical Engineering Journal, 321, 622-634. https://doi.org/10.1016/j.cej.2017.03.135
  5. Kim, C. Y., & Ann, K. Y. (2023). Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct. Journal of the Korean Recycled Construction Resources Institute, 11(1), 89-96.
  6. Kim, C. H., Lee, D. H., & Kim, N. W. (2018). Evaluation on the Rheology and Strength of Recycled Aggregate Concrete with High-Quality Fly Ash as Industrial Byproduct. Journal of the Korean Society for Environmental Technology, 19(2), 184-190. https://doi.org/10.26511/JKSET.19.2.12
  7. Kang, H. Y., Kang, H. B., & Park, S. S. (2010). Strength Behavior and Microstructure of Alkali-Activated Slag Cement Concrete. Journal of Korea Society of Waste Management, 27(5), 405-414.
  8. ASTM. (1999). Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. American Society for Testing and Materials, ASTM C 989-99, 5.
  9. OH, S. H. (2011). A Study on compressive strength and flowing characteristics of alkali-activated mortar containing blast furnace slag. Domestic Master's Thesis Sungkyunkwan University, 57
  10. Kim, J. H., Kim, B. G., Kang, H. J., Kang, S. P., & Jung, Y. N. (2016). Application of Alkali-Activated Slag-Red Mud Cement for Construction. Magazine of the Korea Concrete lnstitute, 28(6), 47-52
  11. Kang, S. P. (2017). Recycling Technologies and Status of Industrial By-Products Red Mud. Magazine of RCR, 12(4), 21
  12. Kim, S. J., Hong, S. U., Kang, S. P., & In, B. E. (2022). Hydration Characteristics of Liquid Red Mud Mixed Cement Paste Neutralized with Sulfuric Acid. Journal of the Korea Institute of Building Construction, 22(5), 431-439. https://doi.org/10.5345/JKIBC.2022.22.5.431
  13. Kang, S. P., Hong, S. U., Kim, S. j., & Park, K. E. (2023). A Study on the Characteristics of Cement Mortar Using Sulfuric Acid Neutralized Red Mud. Building Construction Materials, 23(3), 231-240.
  14. Kang, S. P., Lee, H. R., Kang, H. J., & Lee, B. G. (2019). Characteristics on Compressive Strength of Cement Paste with Content of LRM Neutralized by Nitric Acid and Sulfuric Acid. ournal of the Korean Recycled Construction Resources Institute, 7(4), 333-340.
  15. Mbasha, W., Haldenwang, R., & Masalova, I. (2020). The Influence of Sulfate Availability on Rheology of Fresh Cement Paste. Applied Rheology, 30(1), 54-63. https://doi.org/10.1515/arh-2020-0106
  16. Choe, G., Kang, S., & Kang, H. (2019). Characterization of slag cement mortar containing nonthermally treated dried red mud. Applied Sciences, 9(12), 2510.
  17. Moon, J. Y., & Choi, S. H. (1984). Effect of Organic Admixture(Calcium Lignosulfonate) on the Early Hydration Process of Portland Cement (II). Journal of the Korean Ceramic Society, 21(4), 333-340
  18. Kim, H. M., & Park, J. H. (2023). Influence of Alkali Activator Type and Amount of Addition on CO2 Uptake of GGBFS Geopolymer Pastes Containing Zeolite. Journal of the Korean Recycled Construction Resources Institute, 11(2), 112-119.
  19. Ribeiro, D. V., Labrincha, J. A., & Morelli, M. R. (2011). Potential use of natural red mud as pozzolan for Portland cement. Materials research, 14(1), 60-66. https://doi.org/10.1590/S1516-14392011005000001
  20. Kim, Y. Y. (2021). A study on the development of ready-mixed concrete activated sludge using CaO containing industrial by-products and evaluation of concrete applicability. Domestic doctoral thesis Hanyang University, 193.
  21. Dzunuzovic, N., Komljenovic, M., Nikolic, V., & Ivanovic, T. (2017). External sulfate attack on alkali-activated fly ash-blast furnace slag composite. Construction and Building Materials, 157, 737-747. https://doi.org/10.1016/j.conbuildmat.2017.09.159
  22. Van, N. D., Imasawa, K., & Hama, Y. (2022). Influence of hydrothermal synthesis conditions and carbonation on physical properties of xonotlite-based lightweight material. Construction and Building Materials, 321
  23. Wu, Z., Li, L., Gao, F., Zhang, G., Cai, J., & Cheng, X. (2022). Resource Utilization of Red Mud from the Solid Waste of Aluminum Industry Used in Geothermal Wells. Materials, 15(23), 8446
  24. Zhang, Fuyang., Xiao, Yao., Yang, Tao., Gao, Xuan., Geng, Chenzi., & Jiang, Tao. (2021). Rheology and alkali-silica reaction of alkali-activated slag mortars modified by fly ash microsphere: a comparative analysis to OPC mortars. Materials Research Express, 8(6).
  25. Kim, T. W., & Kang, C. H. (2016). The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement. Journal of the Korea Concrete Institute, 28(2), 205-212. https://doi.org/10.4334/JKCI.2016.28.2.205
  26. Yoon, H. S., Seo, E. A., & Yang, K. H. (2021). Evaluation of Various Properties of Solidified Container Materials for Disposal of Radioactive Wastes Using Waste Concrete Powders. Journal of the Korea Concrete Institute, 33(5), 481-489. https://doi.org/10.4334/JKCI.2021.33.5.481