DOI QR코드

DOI QR Code

Systematic Analysis of Indoor Thermal Environment Influencers and Strategies for Energy-efficient Buildings

건물에너지 절감을 고려한 실내 온열환경 영향요인 및 제어 전략에 관한 문헌고찰

  • Received : 2023.09.19
  • Accepted : 2023.12.03
  • Published : 2024.01.30

Abstract

This study seeks to identify factors influencing the indoor thermal environment with a focus on energy conservation and propose a strategy for controlling indoor thermal conditions. The review of previous experiments measuring occupants' thermal perception highlighted factors impacting their experience, including architectural elements such as materials, colors, windows, lighting, and daylight, environmental factors like air temperature, mean radiant temperature, relative humidity, and air velocity, and personal factors including metabolic rate and clothing insulation. Energy-saving possibilities through indoor thermal control were categorized based on these influencing factors. Methods include adjusting the overall ambient temperature and controlling local temperature using the personal comfort system (PCS). These approaches can influence the set temperature of the heating, ventilation, and air conditioning (HVAC) system. Physiological responses, measured through electroencephalogram (EEG), skin temperature (ST), electrodermal activity (EDA), heart rate (HR), heart rate variability (HRV), SpO2, and metabolic rate (MET), were employed for a quantitative understanding of occupants' thermal perception. This quantitative approach addresses the limitations of subjective qualitative evaluations. A strategy for indoor thermal environment control was proposed by summarizing the analyzed factors. This outcome can serve as fundamental design data for initial architectural plans focusing on thermal indoor environments.

Keywords

References

  1. Albers, F., Maier, J., & Marggraf-Micheel, C. (2015). In search of evidence for the hue-heat hypothesis in the aircraft cabin. Lighting Research and Technology, 47(4), 483-494. https://doi.org/10.1177/1477153514546784
  2. ANSI/ASHRAE. (2017). Standard 55-2017, Thermal environmental conditions for human occupancy. Atlanta: ANSI/ASHRAE.
  3. Bennett, C. A., & Rey, P. (1972). What's so hot about red?. Human Factors, 14(2), 149-154. https://doi.org/10.1177/001872087201400204
  4. Brager, G. S., & De Dear, R. J. (1998). Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27(1), 83-96. https://doi.org/10.1016/S0378-7788(97)00053-4
  5. Caner, I., & Iten, N. (2020). Evaluation of occupants' thermal perception in a university hospital in Turkey. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 173(8), 414-428). https://doi.org/10.1680/jensu.19.00059
  6. Cen, C., Jia, Y., Liu, K., & Geng, R. (2018). Experimental comparison of thermal comfort during cooling with a fan coil system and radiant floor system at varying space heights. Building and Environment, 141, 71-79. https://doi.org/10.1016/j.buildenv.2018.05.057
  7. Cheung, T., Schiavon, S., Parkinson, T., Li, P., & Brager, G. (2019). Analysis of the accuracy on PMV-PPD model using the ASHRAE global thermal comfort database II. Building and Environment, 153, 205-217. https://doi.org/10.1016/j.buildenv.2019.01.055
  8. Chinazzo, G., Chamilothori, K., Wienold, J., & Andersen, M. (2021). Temperature-color interaction: subjective indoor environmental perception and physiological responses in virtual reality. Human factors, 63(3), 474-502. https://doi.org/10.1177/0018720819892383
  9. Chinazzo, G., Wienold, J., & Andersen, M. (2018). Combined effects of daylight transmitted through coloured glazing and indoor temperature on thermal responses and overall comfort. Building and Environment, 144, 583-597. https://doi.org/10.1016/j.buildenv.2018.08.045
  10. Chinazzo, G., Wienold, J., & Andersen, M. (2019). Daylight affects human thermal perception. Scientific Reports, 9(1), 13690.
  11. Choi, E. J., Choi, Y. J., Kim, N. H., & Moon, J. W. (2023). Seasonal effects of thermal comfort control considering real-time clothing insulation with vision-based model. Building and Environment, 235, 110255.
  12. Choi, E. J., Park, B. R., Kim, N. H., & Moon, J. W. (2022). Effects of thermal comfort-driven control based on real-time clothing insulation estimated using an image-processing model. Building and Environment, 223, 109438.
  13. De Dear, R. J., Brager, G. S., Reardon, J., & Nicol, F. (1998). Developing an adaptive model of thermal comfort and preference/discussion. ASHRAE transactions, 104, 145.
  14. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Techinical.
  15. Golasi, I., Salata, F., de Lieto Vollaro, E., & Pena-Garcia, A. (2019). Influence of lighting colour temperature on indoor thermal perception: a strategy to save energy from the HVAC installations. Energy and Buildings, 185, 112-122. https://doi.org/10.1016/j.enbuild.2018.12.026
  16. Griffiths, I. (1990). Thermal comfort studies in buildings with passive solar features, field studies. Report to the Commission of the European Community, 35.
  17. Haldi, F., & Robinson, D. (2008). On the behaviour and adaptation of office occupants. Building and Environment, 43(12), 2163-2177. https://doi.org/10.1016/j.buildenv.2008.01.003
  18. He, Y., Li, N., He, M., & He, D. (2017). Using radiant cooling desk for maintaining comfort in hot environment. Energy and Buildings, 145, 144-154. https://doi.org/10.1016/j.enbuild.2017.04.013
  19. Higgins, J. P., & Green, S. (2008). Cochrane handbook for systematic reviews of interventions. New Jersey.John Wiley & Sons.
  20. Hong, S. H., Do, S. R., & Lee, K. H. (2018). Nationwide reduction of primary energy and greenhouse gas emission by PMV control considering individual metabolic rate variations in apartments. Journal of the architectural institute of Korea structure and construction, 34(10), 37-44.
  21. Hoyt, T., Arens, E., & Zhang, H. (2015). Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 88, 89-96. https://doi.org/10.1016/j.buildenv.2014.09.010
  22. Humphreys, M. A. (2005). Quantifying occupant comfort: are combined indices of the indoor environment practicable?. Building Research and Information, 33(4), 317-325. https://doi.org/10.1080/09613210500161950
  23. James, P., Sonne, J. K., Vieira, R. K., Parker, D. S., & Anello, M. T. (1996). Are energy savings due to ceiling fans just hot air. 1. In Proceedings of the 1996 ACEEE Summer Study on Energy Efficiency in Buildings, 8, 89-93.
  24. Jiang, Y., Li, N., Yongga, A., & Yan, W. (2022). Short-term effects of natural view and daylight from windows on thermal perception, health, and energy-saving potential. Building and Environment, 208, 108575.
  25. Joye, Y., & van den Berg, A. E. (2018). Restorative environments. Environmental Psychology: An Introduction, 65-75.
  26. Kaplan, R., Kaplan, S., & Brown, T. (1989). Environmental preference: a comparison of four domains of predictors. Environment and Behavior, 21(5), 509-530. https://doi.org/10.1177/0013916589215001
  27. Kellert, S. R., & Wilson, E. O. (1993). The biophilia hypothesis. Washington: Island.
  28. Kim, S., Yun, B. Y., Choi, J. Y., Kim, Y. U., & Kim, S. (2023). Quantification of visual thermal perception changes in a wooden interior environment using physiological responses and immersive virtual environment. Building and Environment, 110420.
  29. Ko, W. H., Schiavon, S., Zhang, H., Graham, L. T., Brager, G., Mauss, I., & Lin, Y. W. (2020). The impact of a view from a window on thermal comfort, emotion, and cognitive performance. Building and Environment, 175, 106779.
  30. Kong, D., Liu, H., Wu, Y., Li, B., Wei, S., & Yuan, M. (2019). Effects of indoor humidity on building occupants' thermal comfort and evidence in terms of climate adaptation. Building and Environment, 155, 298-307. https://doi.org/10.1016/j.buildenv.2019.02.039
  31. Korea Energy Statistical Information System. (2022, November 15). Final Energy Consumption by Sector. https://www.kesis.net/sub/subChart.jsp?report_id=930514&reportType=0/
  32. Lee, M., Ham, J., Lee, J. W., & Cho, H. (2023). Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions. Energy, 268, 126722.
  33. Li, B., Du, C., Tan, M., Liu, H., Essah, E., & Yao, R. (2018a). A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot-humid environments. Energy and Buildings, 158, 393-405. https://doi.org/10.1016/j.enbuild.2017.09.062
  34. Li, Z., Ke, Y., Wang, F., & Yang, B. (2018b). A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures. Building and Environment, 143, 1-14. https://doi.org/10.1016/j.buildenv.2018.06.049
  35. Li, Z., Yang, B., Zhou, B., Wang, F., & Li, A. (2023). Thermal responses in temporarily occupied space in the summer: spatial-temporal synergetic alliesthesia using a ceiling fan. Journal of Building Engineering, 107119.
  36. Lipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202-212. https://doi.org/10.1016/j.buildenv.2018.03.013
  37. Liu, C., Sun, L., Jing, X., Zhang, Y., Meng, X., Jia, C., & Gao, W. (2022). How correlated color temperature (CCT) affects undergraduates: a psychological and physiological evaluation. Journal of Building Engineering, 45, 103573.
  38. Luo, M., Arens, E., Zhang, H., Ghahramani, A., & Wang, Z. (2018). Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Building and Environment, 143, 206-216. https://doi.org/10.1016/j.buildenv.2018.07.008
  39. Madsen, T. L., & Saxhof, B. (1977). An unconventional method for reduction of the energy consumption for heating of buildings. Proceedings of XVth International Congress of Refrigeration IV, 623-633.
  40. Marin-Restrepo, L., Trebilcock, M., & Porras-Salazar, J. A. (2020). Adaptation by coexistence: contrasting thermal comfort perception among individual and shared office spaces. Architectural Science Review, 63(3-4), 235-247. https://doi.org/10.1080/00038628.2019.1708257
  41. McCartney, K. & Nicol, F. (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings, 34, 623-635. https://doi.org/10.1016/S0378-7788(02)00013-0
  42. Ministry of Land, Infrastructure and Transport. (2021). Accessed on http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95085603
  43. Ministry of Land, Infrastructure and Transport. (2022). Accessed on http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95086940
  44. Mogensen, M. F., & English, H. B. (1926). The apparent warmth of colors. The American Journal of Psychology, 37, 427-428. https://doi.org/10.2307/1413633
  45. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  46. Nevins, R. (1966). Temperature-humidity chart for themal comfort of seated persons. ASHRAE Transactions, 72, 1283-1291.
  47. Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563-572. https://doi.org/10.1016/S0378-7788(02)00006-3
  48. Sedghikhanshir, A., Zhu, Y., Chen, Y., & Harmon, B. (2022). Exploring the impact of green walls on occupant thermal state in immersive virtual environment. Sustainability, 14(3), 1840.
  49. Song, W., Zhang, Z., Chen, Z., Wang, F., & Yang, B. (2022). Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energy and Buildings, 256, 111747.
  50. Tong, Z., Chen, Y., Malkawi, A., Adamkiewicz, G., & Spengler, J. D. (2016). Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Environment International, 89, 138-146.
  51. Vittori, F., Pigliautile, I., & Pisello, A. L. (2021). Subjective thermal response driving indoor comfort perception: a novel experimental analysis coupling building information modelling and virtual reality. Journal of Building Engineering, 41, 102368.
  52. Wang, H., Liu, G., Hu, S., & Liu, C. (2018). Experimental investigation about thermal effect of color on thermal sensation and comfort. Energy and Buildings, 173, 710-718. https://doi.org/10.1016/j.enbuild.2018.06.008
  53. Wilson, E. O. (1986). Biophilia. Cambridge: Harvard university.
  54. Yang, L., Zhao, S., Gao, S., Zhang, H., Arens, E., & Zhai, Y. (2021). Gender differences in metabolic rates and thermal comfort in sedentary young males and females at various temperatures. Energy and Buildings, 251, 111360.
  55. Zhai, Y., Li, M., Gao, S., Yang, L., Zhang, H., Arens, E., & Gao, Y. (2018). Indirect calorimetry on the metabolic rate of sitting, standing and walking office activities. Building and Environment, 145, 77-84. https://doi.org/10.1016/j.buildenv.2018.09.011
  56. Zhai, Y., Miao, F., Yang, L., Zhao, S., Zhang, H., & Arens, E. (2019). Using personally controlled air movement to improve comfort after simulated summer commute. Building and Environment, 165, 106329.