DOI QR코드

DOI QR Code

Issues and Recommendations for Quasi Steady-State Building Energy Analysis: Focusing on a Domestic Building Energy Efficiency Rating Program (ECO2)

준 정적 건물에너지 해석 평가 도구의 쟁점들 - 국내 건축물 에너지효율등급 인증평가 프로그램 (ECO2)을 중심으로 -

  • Lee, Seung-Ju (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Jo, Hyeong-Gon (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Yoo, Young-Seo (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Chul-Hong (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Cheol-Soo (Dept. of Architecture and Architectural Engineering.Institute of Engineering Research.Institute of Construction and Environmental Engineering, Seoul National University)
  • 이승주 (서울대 건축학과) ;
  • 조형곤 (서울대 건축학과 ) ;
  • 유영서 (서울대 건축학과) ;
  • 박철홍 (서울대 건축학과) ;
  • 박철수 (서울대 건축학과.공학연구원.건설환경종합연구소)
  • Received : 2023.08.21
  • Accepted : 2023.12.09
  • Published : 2024.01.30

Abstract

Building energy analysis can be categorized into steady state, quasi-steady state and dynamic methods. The current Korean building energy standards relies on ECO2 that is based on the quasi-steady state approach. For the purpose of clarity and simplicity, ECO2 is designed to receive deterministic inputs only, and allow for predefined usage profiles such as occupant/lighting/equipment schedule. In this regard, the authors examine technical disadvantages caused by ECO2: (1) unrealistic geometric and HVAC modeling, (2) non-adjustable default input fields, (3) lack of validation for building energy models and users, (4) no account for building's stochastic characteristics, (5) lack of usability in energy-conscious decision making. This paper proposes further recommendations for the Korean building energy standards.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00141900).

References

  1. Ahn, K. U., Kim, Y. J., & Park, C. S. (2012). Issues on dynamic building energy performance assessment in design process. Journal of the Architectural Institute of Korea Planning & Design, 28(12), 361-369.
  2. ASHRAE. (2023). BEMP-Building energy modeling professional certification. Earn a BEMP Certification. Retrieved Mar 10, 2023 from https://www.ashrae.org/professional-development/ashrae-certification/certification-types/bemp-building-energy-modeling-professional-certification
  3. Cho, W. H., Kang, S. H., & Seong, Y. B. (2012). A study on the comparison analysis of minimum airflow control logic of VAV Terminal Box. Journal of the Korean Solar Energy Society, 32(4), 96-102.
  4. Crawley, D. B., Hand, J., Kummert, M., & Griffith, B. T. (2008), Contrasting the capabilities of building energy performance simulation programs, Building and Environment, 43(4), 6610673
  5. de Wit, S., & Augenbroe, G. (2001). Uncertainty analysis of building design evaluations. In Proceeding of the 7th International Building Simulation Conference, Rio de Janeiro.
  6. Gogtay, N. J., & Thatte, U. M. (2017). Principles of correlation analysis. Journal of the Association of Physicians of India, 65(3), 78-81.
  7. Hopfe, C. J. (2009). Uncertainty and Sensitivity Analysis in Building Performance Simulation for Decision Support and Design Optimization, Ph. D. Dissertation, Eindhoven University.
  8. Hopfe, C. J., & Hensen, J. L. (2011). Uncertainty analysis in building performance simulation for design support. Energy and Buildings, 43(10), 2798-2805. https://doi.org/10.1016/j.enbuild.2011.06.034
  9. International Organization for Standardization. (2008). Energy performance of buildings-Calculation of energy use for space heating and cooling (ISO Standard No. 13790:2008). https://www.iso.org/standard/41974.html
  10. Interntional Organization for Standardization. (2017). Energy performance of buildings-Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads (ISO Standard No. 52016-1:2017). https://www.iso.org/standard/65696.html
  11. International Organization for Standardization. (2018). Energy efficiency of buildings-Calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting - Part 1: General balancing procedures, terms and definitions, zoning and evaluation of energy sources (DIN V No. 18599-1:2018-09 ) . https://www.beuth.de/en/pre-standard/din-v-18599-1/293515783
  12. Jo, J. H. (2017). A study on Evaluation Criteria and Evaluation Tool for Energy Performance of internal and external Building, Construction technique/Ssangyong, special project II- Zero Energy Building Policies and Trends of internal and external Building, 16-23.
  13. Kang, E. H., Kim, D. S., Lee, H. M. & Yoon, J. H. (2022). A comparative analysis of solar radiation in Korea's typical meteorological year for building energy analysis. Journal of the Korean Solar Energy Society, 42(6), 157-171. https://doi.org/10.7836/kses.2022.42.6.157
  14. KEA. (2016). Building Energy Efficiency Certification, Korea Energy Agency.
  15. Kim, S. E., Choi, S. H., & Park, J. C. (2020). Analysis of thermal storage effects of PCM floor radiant heating system according to heating schedule. Korean Journal of Air-Conditioning and Refrigeration Engineering, 32(6), 272-277. https://doi.org/10.6110/KJACR.2020.32.6.272
  16. Kim, S. H. (2015a). How to improve usability of building energy simulation for the integrated design process-based on practitioner survey and design process comparison, Korea Inst. Ecol. Archit. Environ. J.(KIEAE J.), 15(6), 47-56. https://doi.org/10.12813/kieae.2015.15.6.047
  17. Kim, S. H. (2015b). Level of Detail (LOD) for building energy conservation measures (ECMs), Korea Inst. Ecol. Archit. Environ. J.(KIEAE J.), 15(6), 69-80. https://doi.org/10.12813/kieae.2015.15.6.069
  18. Koci, J., Koci, V., Madera, J., & Cerny, R. (2019). Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data. Renewable and Sustainable Energy Reviews, 100, 22-32. https://doi.org/10.1016/j.rser.2018.10.022
  19. Korea Energy Agency. (2020). Operating regulations for the building energy efficiency certification. Operating Regulations for the Building Energy Efficiency Certification. Retrieved Jul 20, 2023 from https://beec.energy.or.kr/BC/BC04/BC04_05_002.do?no=5
  20. Korea Institute of Construction Technology. (2014). Construction report/Published data. Codil. Retrieved Feb 20, 2023 from https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201600012130
  21. Lee, J. H., Yu, K. H., & Cho, D. W. (2009). An analysis of comparison between the evaluation tool for building energy efficiency rating system and detailed analysis programs. In Proceedings of the SAREK Conference (pp. 3-8). The Society of Air-Conditioning and Refrigerating Engineers of Korea.
  22. Lee, S. J., Yoo, Y. S., & Park, C. S. (2022). Comparison of deterministic and stochastic approaches in building energy demands - focused on Usage Profiles -. Journal of the Architectural Institute of Korea, 38(8), 213-219. https://doi.org/10.5659/JAIK.2022.38.8.213
  23. Liang, H. (2021). Optimization of floor radiant air conditioning heating system in building heating design. International Journal of Low-Carbon Technologies, 16(1), 205-211. https://doi.org/10.1093/ijlct/ctaa051
  24. Park, C. S. (2006). Normative assessment of technical building performance. Journal of Architecture Institute (Planning), 22(11), 337-344.
  25. Wu, X., Zhao, J., Olesen, B. W., Fang, L., & Wang, F. (2015). A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems. Energy and buildings, 105, 285-293.  https://doi.org/10.1016/j.enbuild.2015.07.056