Acknowledgement
The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.
References
- Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Abbas, I.A., Abdalla, A.E.N.N., Alzahrani, F.S. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stress., 39(11), 1367-1377. https://doi.org/10.1080/01495739.2016.1218229.
- Baksi, A., Roy, B.K. and Bera, R.K. (2006), "Eigenvalue approach to study the effect of rotation and relaxation time in generalized magneto-thermo-viscoelastic medium in one dimension", Math. Comput. Model., 44(11-12), 1069-1079. https://doi.org/10.1016/j.mcm.2006.03.010.
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Ind. J. Pure Appl. Math., 28(12), 1573-1594.
- Diaz, S.H., Nelson, J.S. and Wong, B.J. (2002), "Rate process analysis of thermal damage in cartilage", Phys. Medic. Biol., 48(1), 19. https://doi.org/10.1088/0031-9155/48/1/302.
- Dillenseger, J.L. and Esneault, S. (2010), "Fast FFT-based bioheat transfer equation computation", Comput. Biol. Medic., 40(2), 119-123. https://doi.org/10.1016/j.compbiomed.2009.11.008.
- Fahmy, M.A. (2019), "Boundary element modeling and simulation of biothermomechanical behavior in anisotropic laser-induced tissue hyperthermia", Eng. Anal. Bound. Elem., 101, 156-164. https://doi.org/10.1016/j.enganabound.2019.01.006.
- Gabay, I., Abergel, A., Vasilyev, T., Rabi, Y., Fliss, D.M. and Katzir, A. (2011), "Temperature-controlled two-wavelength laser soldering of tissues", Laser. Surgery Medic., 43(9), 907-913. https://doi.org/10.1002/lsm.21123
- Ghanmi, A. and Abbas, I.A. (2019), "An analytical study on the fractional transient heating within the skin tissue during the thermal therapy", J. Therm. Biol., 82, 229-233. https://doi.org/10.1016/j.jtherbio.2019.04.003.
- Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elastic., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London. Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Gupta, N.D. and Das, N.C. (2016), "Eigenvalue approach to fractional order generalized thermoelasticity with line heat source in an infinite medium", J. Therm. Stress., 39(8), 977-990. https://doi.org/10.1080/01495739.2016.1187987.
- Gupta, P.K., Singh, J. and Rai, K. (2010), "Numerical simulation for heat transfer in tissues during thermal therapy", J. Therm. Biol., 35(6), 295-301. https://doi.org/10.1016/j.jtherbio.2010.06.007.
- Gupta, P.K., Singh, J., Rai, K. and Rai, S. (2013), "Solution of the heat transfer problem in tissues during hyperthermia by finite difference-decomposition method", Appl. Math. Comput., 219(12), 6882-6892. https://doi.org/10.1016/j.amc.2013.01.020.
- Hobiny, A. and Abbas, I. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Result. Phys., 15, 102588. https://doi.org/10.1016/j.rinp.2019.102588.
- Hobiny, A. and Abbas, I. (2021), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Bas. Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055.
- Kim, J.Y., Jang, K., Yang, S.J., Baek, J.H., Park, J.R., Yeom, D.I., ... & Chung, S.C. (2016), "Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin", J. Korean Phys. Soc., 68, 979-988. https://doi.org/10.3938/jkps.68.979.
- Kumar, P., Kumar, D. and Rai, K. (2015), "A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment", J. Therm. Biol., 49, 98-105. https://doi.org/10.1016/j.jtherbio.2015.02.008.
- Kumar, R., Miglani, A. and Rani, R. (2016), "Analysis of micropolar porous thermoelastic circular plate by eigenvalue approach", Arch. Mech., 68(6), 423-439.
- Kumar, R., Miglani, A. and Rani, R. (2017), "Eigenvalue formulation to micropolar porous thermoelastic circular plate using dual phase lag model", Multidisc. Model. Mater. Struct., 13(2), 347-362. https://doi.org/10.1108/mmms-08-2016-0038.
- Lata, P. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
- Lata, P. and Kaur, H. (2022), "Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid", Couple. Syst. Mech., 11(3), 199-215. https://doi.org/10.12989/csm.2022.11.3.199.
- Li, X., Li, C., Xue, Z. and Tian, X. (2018), "Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties", Int. J. Therm. Sci., 124, 459-466. https://doi.org/10.1016/j.ijthermalsci.2017.11.002.
- Li, X., Li, C., Xue, Z. and Tian, X. (2019), "Investigation of transient thermo-mechanical responses on the triple-layered skin tissue with temperature dependent blood perfusion rate", Int. J. Therm. Sci., 139, 339-349. https://doi.org/10.1016/j.ijthermalsci.2019.02.022.
- Li, X., Qin, Q.H. and Tian, X. (2019), "Thermomechanical response of porous biological tissue based on local thermal non-equilibrium", J. Therm. Stress., 42(12), 1481-1498. https://doi.org/10.1080/01495739.2019.1660599.
- Li, X., Xue, Z. and Tian, X. (2018), "A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties", Int. J. Therm. Sci., 132, 249-256. https://doi.org/10.1016/j.ijthermalsci.2018.06.007.
- Mahjoob, S. and Vafai, K. (2009), "Analytical characterization of heat transport through biological media incorporating hyperthermia treatment", Int. J. Heat Mass Transf., 52(5-6), 1608-1618. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.038.
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
- Marin, M., Hobiny, A. and Abbas, I. (2021), "Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources", Math., 9(13), 1459. https://doi.org/10.3390/math9131459.
- Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
- Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermoelasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.2160290.
- Mitchell, J.W., Galvez, T.L., Hengle, J., Myers, G.E. and Siebecker, K.L. (1970), "Thermal response of human legs during cooling", J. Appl. Physiol., 29(6), 859-865. https://doi.org/10.1152/jappl.1970.29.6.859.
- Mohammed, B.N. and Ismael, D.S. (2022), "A computational model for temperature monitoring during human liver treatment by Nd: YaG Laser Interstitial Thermal Therapy (LITT)", Aro-Scientif. J. Koya Univ., 10(2), 38-44. http://doi.org/10.14500/aro.10949.
- Naik, N.S. and Sayyad, A.S. (2020), "1D thermal analysis of laminated composite and sandwich plates using a new fifth order shear and normal deformation theory", Mater. Today: Proc., 21, 1084-1088. https://doi.org/10.1016/j.matpr.2020.01.009.
- Othman, M.I., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperatures in the resting human forearm", J. Appl. Physiol., 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93.
- Santra, S., Lahiri, A. and Das, N.C. (2014), "Eigenvalue approach on thermoelastic interactions in an infinite elastic solid with voids", J. Therm. Stress., 37(4), 440-454. https://doi.org/10.1080/01495739.2013.870854.
- Shen, W., Zhang, J. and Yang, F. (2005), "Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue", Math. Comput. Model., 41(11-12), 1251-1265. https://doi.org/10.1016/j.mcm.2004.09.006.
- Singh, S. and Lata, P. (2023), "Effect of two temperature and nonlocality in an isotropic thermoelastic thick circular plate without energy dissipation", Part. Diff. Equ. Appl. Math., 7, 100512. https://doi.org/10.1016/j.padiff.2023.100512.
- Sobhy, M. and Zenkour, A.M. (2022), "Refined lord-shulman theory for 1D response of skin tissue under ramp-type heat", Mater. (Basel), 15(18), 6292. https://doi.org/10.3390/ma15186292.
- Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
- Xu, F., Lu, T.J. and Seffen, K.A. (2008a), "Biothermomechanics of skin tissues", J. Mech. Phys. Solid., 56(5), 1852-1884. https://doi.org/10.1016/j.jmps.2007.11.011.
- Xu, F., Seffen, K.A. and Lu, T.J. (2008b), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Transf., 51(9-10), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.
- Xu, F., Wen, T., Lu, T.J. and Seffen, K.A. (2008c), "Skin biothermomechanics for medical treatments", J. Mech. Behav. Biomed. Mater., 1(2), 172-187. https://doi.org/10.1016/j.jmbbm.2007.09.001.
- Yadav, S., Kumar, D. and Rai, K.N. (2014), "Finite element legendre wavelet Galerkin approch to inward solidification in simple body under most generalized boundary condition", Zeitschrift fur Naturforschung A, 69(10-11), 501-510. https://doi.org/10.5560/zna.2014-0052.
- Youssef, H.M. and Alghamdi, N.A. (2020), "Modeling of one-dimensional thermoelastic dual-phase-lag skin tissue subjected to different types of thermal loading", Sci. Rep., 10(1), 3399. https://doi.org/10.1038/s41598-020-60342-6.
- Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model", Int. J. Struct. Stab. Dyn., 14(7), https://doi.org/10.1142/S0219455414500254.
- Zhou, J., Chen, J. and Zhang, Y. (2009), "Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation", Comput. Biol. Medic., 39(3), 286-293. https://doi.org/10.1016/j.compbiomed.2009.01.002.
- Zhu, D., Luo, Q., Zhu, G. and Liu, W. (2002), "Kinetic thermal response and damage in laser coagulation of tissue", Laser. Surgery Medic., 31(5), 313-321. https://doi.org/10.1002/lsm.10108.