References
- Abaas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forsch Ingenieurwes, 71, 215-222. https://doi.org/10.1007/s10010-007-0060-x.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20, 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Abbas, I.A., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abouelregal, A.E. and Abo-Dahab, S.M. (2018), "A two-dimensional problem of a mode-I crack in a rotating fbre-reinforced isotropic thermoelastic medium under dual-phase-lag model", Sadhana, 43(1), 1-11. https://doi.org/10.1007/s12046-017-0769-7.
- Abouelregal, A.E. and Zenkour, A.M. (2013), "The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium", Chin. Phys. B, 22(1-8), 108102. https://doi.org/10.1088/1674-1056/22/10/108102.
- Abouelregal, A.E., Askar, S.S., Marin, M. and Mohamed, B. (2023), "The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod", Scientif. Report., 13, 9052. https://doi.org/10.1038/s41598-023-36371-2.
- Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech., 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6.
- Alzahrani, F., Hobiny, A., Abbas, I.A. and Marin, M. (2020), "An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities", Symmetry, 12(5), 848. https://doi.org/10.3390/sym12050848.
- Chang, T.L. and Lee, C.L. (2022), "New mixed formulation and mesh dependency of finite elements based on the consistent couple stress theory", Preprint: arXiv:2207.02544v1.
- Chen, W., Xu, M. and Li, L. (2012), "A model of composite laminated Reddy plate based on new modified couple stress theory", Compos. Struct., 94(7), 2143-2156. https://doi.org/10.1016/j.compstruct.2012.02.009.
- Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris.
- Dai, T. and Dai, H.L. (2016), "Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed", Appl. Math. Model., 40(17-18), 7689-7707. https://doi.org/10.1016/j.apm.2016.03.025.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 38(3), 2413-242. https://doi.org/10.1007/s00366-020-01212-7.
- Fard, K.M., Gharechahi, A., Fard, N.M. and Mobki, H. (2018), "Investigation of dynamic instability of three plates switch under step DC voltage actuation using modified couple stress theory", Lat. Am. J. Solid. Struct., 15(7), 1-17. https://doi.org/10.1590/1679-78254636.
- Golmakani, M.E. (2013), "Large deflection thermoelastic analysis of shear deformable functionally graded variable thickness rotating disk", Compos. Part B: Eng., 45(1), 1143-1155. https://doi.org/10.1016/j.compositesb.2012.08.012.
- Gunghas, A., Kumar, R., Deswal, S. and Kalkal, K.K. (2019), "Influence of rotation and magnetic fields on a functionally graded thermoelastic solid subjected to a mechanical load", J. Math., 2019, Article ID 1016981. https://doi.org/10.1155/2019/1016981.
- Hongwei, L., Shen, S., Oslub, K., Habibi, M. and Safarpour, H. (2021), "Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity", Eng. Comput., 38(7), 3977-3991. https://doi.org/10.1007/s00366-021-01316-8.
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Keivani, M., Gheisari, R., Kanani, A., Abadian, N., Mokhtari, J., Rach, R. and Abadyan, M. (2016), "Effect of the centrifugal force on the electromechanical instability of U-shaped and double-sided sensors made of cylindrical nanowires", J. Brazil. Soc. Mech. Sci. Eng., 38(7), 2129-2148. https://doi.org/10.1007/s40430-016-0493-y.
- Keivani, M., Mokhtari, J., Abadian, N., Abbasi, M., Koochi, A. and Abadyan, M. (2018), "Analysis of U-shaped NEMS in the presence of electrostatic, casimir, and centrifugal forces using consistent couple stress theory", Iran. J. Sci. Technol. Trans. Sci., 42, 1647-1658. https://doi.org/10.1007/s40995-017-0151-y.
- Koiter, W. (1964), "Couple-stresses in the theory of elasticity, I and II, Prec, Roy", Netherlands Acad. Sci. B, 67, 0964.
- Kumar, A. (2017), "Elastodynamic effects of hall current with rotation in a microstretch thermoelastic solid", Math./Stat., 20(3), 345-354. https://doi.org/10.6180/jase.2017.20.3.09.
- Kumar, R. and Gupta, R.R. (2010), "Deformation due to inclined load in an orthotropic micropolar thermoelastic medium with two relaxation times", Appl. Math. Inform. Sci., 4(3), 413-428.
- Kumar, R., Devi, S. and Sharma, V. (2019), "Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags", Mech. Mech. Eng., 23(1), 36-49. https://doi.org/10.2478/mme-2019-0006
- Kumar, R., Sharma, K.D. and Garg, S.K. (2014), "Effect of two temperatures on refection coeffcient in micropolar thermoelastic with and without energy dissipation media", Adv. Acoust. Vib., 2014, Article ID 846721. http://doi.org/10.1155/2014/846721.
- Lata, P. and Kaur, H. (2021), "Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory", Compos. Mater. Eng., 3(2), 89-106. https://doi.org/10.12989/cme.2021.3.2.089.
- Lata, P. and Kaur, I. (2019), "Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. https://doi.org/10.12989/amr.2019.8.2.083.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
- Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031.
- Madic, M. and Radovanovic, M. (2014), "Optimization of machining processes using pattern search algorithm", Int. J. Indus. Eng. Comput., 5(2), 223-234. https://doi.org/10.5267/j.ijiec.2014.1.002.
- Marin, M., Hobiny, H. and Abbas, I.A. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14),1606. https://doi.org/10.3390/math9141606.
- Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/bf02327219.
- Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2014), "Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model", Can. J. Phys., 92(2), 149-158. https://doi.org/10.1139/cjp-2013-0398.
- Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes, Cambridge University Press, Cambridge.
- Rahi, A. (2019), "Investigation into size effect on lateral vibrations of a micro-drill subjected to an axial load using the modified couple stress theory", Scientia Iranica, 26(4), 2441-2453.
- Resmi, R., Babu, V.S. and Baiju, M.R. (2021), "Numerical study of thermoelastic damping effects on diamond based beams with plane stress and plane strain conditions applying nonclassical elasticity theory", Adv. Dyn. Syst. Appl., 16(2), 1371-1379.
- Said, S. (2020), "Fractional derivative heat transfer for rotating modified couple stress magneto-thermoelastic medium with two temperatures", Wave. Random and Complex Media, 32(3), 1-18. https://doi.org/10.1080/17455030.2020.1828663.
- Said, S.M., Elmaklizi, Y.D. and Othman, M.I.A. (2017), "A two temperature rotating-micropolar thermoelastic medium under influence of magnetic field", Chaos, Solit. Fract., 97, 75-83. https://doi.org/10.1016/j.chaos.2017.01.016.
- Salem, A. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
- Sharma, D., Kaur, R. and Sharma, H., (2021), "Investigation of thermo-elastic characteristics in functionally graded rotating disk using finite element method", Nonlin. Eng., 10(1), 312-322. https://doi.org/10.1515/nleng-2021-0025.
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Springer Science & Business Media, Birkhauser Boston, Cambridge, U.S.A.
- Teng, Z., Wang, W. and Gu, C. (2022), "Free vibration and buckling characteristics of porous functionally graded materials (FGMs) micro-beams based on the modified couple stress theory", Zeitschrift fur Angewandte Mathematik und Mechanik, 102(4), e202100219. https://doi.org/10.1002/zamm.202100219.
- Voigt, W. (1887), "Theoretische studien uber die elasticitatsverhaltnisse der krystalle", Konigliche Gesellschaft der Wissenschaften zu Gottingen.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zenkour, A. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element mode", Int. J. Struct. Stab. Dyn., 14(6), 1450025. https://doi.org/10.1142/S0219455414500254.