DOI QR코드

DOI QR Code

Weight optimization of coupling with bolted rim using metaheuristics algorithms

  • Mubina Nancy (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • S. Elizabeth Amudhini Stephen (Department of Mathematics, Karunya Institute of Technology and Sciences)
  • Received : 2022.01.11
  • Accepted : 2023.07.31
  • Published : 2024.02.25

Abstract

The effectiveness of coupling with a bolted rim is assessed in this research using a newly designed optimization algorithm. The current study, which is provided here, evaluates 10 contemporary metaheuristic approaches for enhancing the coupling with bolted rim design problem. The algorithms used are particle swarm optimization (PSO), crow search algorithm (CSA), enhanced honeybee mating optimization (EHBMO), Harmony search algorithm (HSA), Krill heard algorithm (KHA), Pattern search algorithm (PSA), Charged system search algorithm (CSSA), Salp swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based Algorithm (GBA). The contribution of the paper isto optimize the coupling with bolted rim problem by comparing these 10 algorithms and to find which algorithm gives the best optimized result. These algorithm's performance is evaluated statistically and subjectively.

Keywords

References

  1. Abderazek, H. and Hamza, F. (2018), "Engineering design optimization using adaptive mixed differential evolution algorithm", International Conference on Advanced Mechanics and Renewable Energies ICAMRE2018.
  2. Abderazek, H., Yildiz, A.R. and Sait, S.M. (2019), "Mechanical engineering design optimisation using novel adaptive differential evolution algorithm", Int. J. Vehic. Des., 80(2-4), 285-329. https://doi.org/10.1504/IJVD.2019.109873.
  3. Abualigah, L., Shehab, M., Alshinwan, M. and Alabool, H. (2020), "Salp swarm algorithm: a comprehensive survey", Neur. Comput. Appl., 32, 11195-11215. https://doi.org/10.1007/s00521-019-04629-4
  4. Askarzadeh, A. (2016), "A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm", Comput. Struct., 169, 1-12. http://doi.org/10.1016/j.compstruc.2016.03.001.
  5. Elbeltagi, E., Hegazy, T. and Grierson, D. (2005), "Comparison among five evolutionary-based optimization algorithms", Adv. Eng. Inform., 19(1), 43-53. https://doi.org/10.1016/j.aei.2005.01.004.
  6. Gandomi, A.H. and Alavi, A.H. (2016), "An introduction of krill herd algorithm for engineering optimization", J. Civil Eng. Manage., 22(3), 302-310. http://doi.org/10.3846/13923730.2014.897986.
  7. Giraud-Moreau, L. and Lafon, P. (2002), "A comparison of evolutionary algorithms for mechanical design components", Eng. Optim., 34(3), 307-322. https://doi.org/10.1080/03052150211750.
  8. Kaveh, A., Khanzadi, M., Moghaddam, M.R. and Rezazadeh, M. (2018), "Charged system search and magnetic charged system search algorithms for construction site layout planning optimization", Periodica Polytechnica Civil Eng., 62(4), 841-850. https://doi.org/10.3311/PPci.11963.
  9. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-international Conference on Neural Networks, 4, 1942-1948.
  10. Kim, J., Kim, Y. and Kim, Y. (2008), "A gradient-based optimization algorithm for lasso", J. Comput. Graph. Statist., 17(4), 994-1009. https://doi.org/10.1198/106186008X386210.
  11. Kumar, S., Yildiz, B.S., Mehta, P., Panagant, N., Sait, S.M., Mirjalili, S. and Yildiz, A.R. (2023), "Chaotic marine predators algorithm for global optimization of real-world engineering problems", Knowledge-Bas. Syst., 261, 110192. https://doi.org/10.1016/j.knosys.2022.110192.
  12. Lafon, P. (1994), "Conception optimale de systemes mecaniques: Optimisation en variables mixtes", Doctoral Dissertation, Institut National des Sciences Appliquees de Toulouse.
  13. Madic, M. and Radovanovic, M. (2014), "Optimization of machining processes using pattern search algorithm", Int. J. Indus. Eng. Comput., 5(2), 223-234. https://doi.org/10.5267/j.ijiec.2014.1.002.
  14. Mehta, P., Sultan Yildiz, B., Pholdee, N., Kumar, S., Riza Yildiz, A., Sait, S.M. and Bureerat, S. (2023), "A novel generalized normal distribution optimizer with elite oppositional based learning for optimization of mechanical engineering problems", Mater. Test., 65(2), 210-223. https://doi.org/10.1515/mt-2022-0259.
  15. Nancy, M. and Stephen, S.E.A. (2021), "A comprehensive review on harmony search algorithm", Ann. Roman. Soc. Cell Biol., 5480-5483.
  16. Nancy, M. and Stephen, S.E.A. (2021), "Enhanced honey bee-mating optimization-A critical survey", Ann. Roman. Soc. Cell Biol., 4746-4750.
  17. Tabakov, P.Y. (2011), "Big bang-big crunch optimization method in optimum design of complex composite laminates", Int. J. Mech. Mechatron. Eng., 5(5), 927-931.
  18. Vrgoc, A., Tomicevic, Z., Smaniotto, B. and Hild, F. (2021), "Damage characterization in fiber reinforced polymer via digital volume correlation", Couple. Syst. Mech., 10(6), 545-560. https://doi.org/10.12989/csm.2021.10.6.545.
  19. Yildiz, A.R., Abderazek, H. and Mirjalili, S. (2020), "A comparative study of recent non-traditional methods for mechanical design optimization", Arch. Comput. Meth. Eng., 27, 1031-1048. https://doi.org/10.1007/s11831-019-09343-x.
  20. Yildiz, B.S., Kumar, S., Panagant, N., Mehta, P., Sait, S.M., Yildiz, A.R., ... & Mirjalili, S. (2023), "A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems", Knowledge-Bas. Syst., 271, 110554. https://doi.org/10.1016/j.knosys.2023.110554.
  21. Yildiz, B.S., Mehta, P., Panagant, N., Mirjalili, S. and Yildiz, A.R. (2022), "A novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problems", J. Comput. Des. Eng., 9(6), 2452-2465. https://doi.org/10.1093/jcde/qwac113.
  22. Yildiz, B.S., Yildiz, A.R., Albak, E.I., Abderazek, H., Sait, S.M. and Bureerat, S. (2020), "Butterfly optimization algorithm for optimum shape design of automobile suspension components", Mater. Test., 62(4), 365-370. http://doi.org/10.1515/mt-2020-620509.