DOI QR코드

DOI QR Code

Analysis of Lipophilic Constituents Related to Heartwood Formation in Young Swietenia mahagoni (L.) Jacq Trees

  • Received : 2023.07.03
  • Accepted : 2023.12.01
  • Published : 2024.01.25

Abstract

Swietenia mahagoni is one of the commercial timbers in Indonesia. Mahogany heartwood is an important characteristic as it relates to the natural durability and aesthetics of the wood. Lipophilic extractives are known to be involved in the heartwood formation process. Therefore, this study aims to determine the lipophilic compounds associated with heartwood formation. The n-hexane extract from sapwood and heartwood samples (1 to 5 years) was analyzed by gas chromatography-mass spectrometry. The results showed that the content of n-hexane extract ranged from 0.76% to 2.45% based on dry wood. The main group of compounds identified in the lipophilic fraction consisted of sterols (β-sitosterol, stigmasterol, campasterol, and cyclolaudenol), fatty acids (palmitic, oleic, linoleic, and stearic acid), and hydrocarbons (pentadecane, 1-octadecane, hexadecane, cyclotetracosane, cycloeicosane, and cyclooctacosane) after heartwood formation. In addition, the hydrocarbon fraction was the largest, followed by sterols, fatty acids, and 1-heneicosanol. In the radial variation, the distribution of fatty acids was greater in the sapwood than in the heartwood (4-year-old). However, the reverse pattern was found at the age of 5 years. The lipophilic fraction was generally more abundant in the heartwood compared to the sapwood, especially at 5 years of age, with much higher levels than when the heartwood was forming (4 years). These findings show that when the heartwood formation begins, the lipid composition was not fully metabolized at the beginning of heartwood formation compared to 5-year-old trees.

Keywords

Acknowledgement

This research was funded by the Post-Doctoral Program (No. 5836/UN1/DITLIT/Dit-Lit/PT.01.05/2022) Batch II 2022, Universitas Gadjah Mada. Authors also thanks to BRIN Staff for support this manuscript.

References

  1. Adfa, M., Wiradimafan, K., Pratama, R.F., Sanjaya, A., Triawan, D.A., Yudha, S., Ninomiya, M., Rafi, M., Koketsu, M. 2023. Anti-termite activity of Azadirachta excelsa seed kernel and its isolated compound against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 51(3): 157-172. https://doi.org/10.5658/WOOD.2023.51.3.157
  2. Anonymous. 1957. International glossary of terms used in wood anatomy (prepared by the International Association of Wood Anatomists). Tropical Woods 107: 1-36.
  3. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. https://doi.org/10.5658/WOOD.2022.50.6.458
  4. Arisandi, R., Ashitani, T., Takahashi, K., Marsoem, S.N., Lukmandaru, G. 2020. Lipophilic extractives of the wood and bark from Eucalyptus pellita F. Muell grown in Merauke, Indonesia. Journal of Wood Chemistry and Technology 40(2): 146-154.
  5. Arisandi, R., Marsoem, S.N., Lukmandaru, G., Sutapa, J.P.G. 2022. Analysis of sugar components related to heartwood formation in young Swietenia mahagoni (L.) Jacq trees. Journal of Wood Chemistry and Technology 42(3): 137-148. https://doi.org/10.1080/02773813.2022.2048668
  6. Arisandi, R., Masendra, Purba, B.A.V., Wati, F.Z., Ihda, F.V., Sumantri, F., Lukmandaru, G. 2019. Lipophilic extractives of mahogany (Swietenia macrophylla King) barks. In: Denpasar, Indonesia, Proceedings of the 9th International Symposium of Indonesian Wood Research Society, pp. 192-201.
  7. Benouadah, N., Pranovich, A., Aliouche, D., Hemming, J., Smeds, A., Willfor, S. 2017. Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria. Holzforschung 72(2): 97-104. https://doi.org/10.1515/hf-2017-0098
  8. Bertaud, F., Holmbom, B. 2004. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology 38(4): 245-256. https://doi.org/10.1007/s00226-004-0241-9
  9. Blanchette, R.A., Biggs, A.R. 1992. Defense Mechanisms of Woody Plants Against Fungi. Springer, Berlin, Germany.
  10. Cahyono, T.D., Yanti, H., Anisah, L.N., Massijaya, M.Y., Iswanto, A.H. 2020. Linear expansion and durability of a composite boards (MDF laminated using three selected wood veneers) against drywood termites. Journal of the Korean Wood Science and Technology 48(6): 907-916. https://doi.org/10.5658/WOOD.2020.48.6.907
  11. Cheng, Q., Zhang, Y., Lin, Q., Tian, Y., Bao, Y. 2022. Study on the antioxidant activity of β-sitosterol and stigmasterol from Sacha Inchi oil and Prinsepia oil added to walnut oil. Food Science and Technology 42: e69522.
  12. Darmawan, W., Nandika, D., Afaf, B.D.H., Rahayu, I., Lumongga, D. 2018. Radial variation in selected wood properties of Indonesian merkusii pine. Journal of the Korean Wood Science and Technology 46(4): 323-337. https://doi.org/10.5658/WOOD.2018.46.4.323
  13. del Río, J.C., Gutierrez, A., Gonzalez-Vila, F.J., Martín, F., Romero, J. 1998. Characterization of organic deposits produced in the kraft pulping of Eucalyptus globulus wood. Journal of Chromatography A 823(1-2): 457-465. https://doi.org/10.1016/S0021-9673(98)00179-4
  14. del Rio, J.C., Rencoret, J., Martinez, A.T., Gutierrez, A. 2011. Recent advances in Eucalyptus wood chemistry. In: Porto Seguro Bahia, Brazil, Proceedings of the 5th International Colloquium on Eucalyptus Pulp.
  15. Desbois, A.P., Smith, V.J. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology 85(6): 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
  16. Domingues, R.M.A., Sousa, G.D.A., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. 2010. Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds. Industrial Crops and Products 31(1): 65-70. https://doi.org/10.1016/j.indcrop.2009.09.002
  17. Dunisch, O., Richter, H.G., Koch, G. 2010. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Science and Technology 44(2): 301-313. https://doi.org/10.1007/s00226-009-0275-0
  18. Ekman, R. 1979. Analysis of the Nonvolatile Extractives in Norway Spruce Sapwood and Heartwood. Abo Akademi, Turku, Finland. pp. 1-20.
  19. Ella Nkogo, L.F., Bopenga Bopenga, C.S.A., Ngohang, F.E., Mengome, L.E., Aboughe Angone, S., Edou Engonga, P. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from Gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125. https://doi.org/10.5658/WOOD.2022.50.2.113
  20. Fadwati, A.D., Hidayati, F., Na'iem, M. 2023. Evaluation of genetic parameters of growth characteristics and basic density of Eucalyptus pellita clones planted at two different sites in East Kalimantan, Indonesia. Journal of the Korean Wood Science and Technology 51(3): 222-237. https://doi.org/10.5658/WOOD.2023.51.3.222
  21. Febrianto, F., Pranata, A.Z., Septiana, D., Arinana, A., Gumilang, A., Hidayat, W., Jang, J.H., Lee, S.H., Hwang, W.J., Kim, N.H. 2015. Termite resistance of the less known tropical woods species grown in West Java, Indonesia. Journal of the Korean Wood Science and Technology 43(2): 248-257. https://doi.org/10.5658/WOOD.2015.43.2.248
  22. Ferreira, J.P.A., Miranda, I., Pereira, H. 2018. Chemical composition of lipophilic extractives from six eucalyptus bark. Wood Science and Technology 52: 1685-1699. https://doi.org/10.1007/s00226-018-1054-6
  23. Freire, C.S.R., Pinto, P.C.R., Santiago, A.S., Silvestre, A.J.D., Evtuguin, D.V., Neto, C.P. 2006a. Comparative study of lipophilic extractives of hardwoods and corresponding ECF bleached kraft pulps. BioResources 1(1): 3-17. https://doi.org/10.15376/biores.1.1.3-17
  24. Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. 2002a. Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56(2): 143-149. https://doi.org/10.1515/HF.2002.024
  25. Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Cavaleiro, J.A.S. 2002b. Lipophilic extractives of the inner and outer barks of Eucalyptus globulus. Holzforschung 56(4): 372-379. https://doi.org/10.1515/HF.2002.059
  26. Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Evtuguin, D.V. 2006b. Effect of oxygen, ozone and hydrogen peroxide bleaching stages on the contents and composition of extractives of Eucalyptus globulus kraft pulps. Bioresource Technology 97(3): 420-428. https://doi.org/10.1016/j.biortech.2005.03.006
  27. Gominho, J., Lourenco, A., Marques, A.V., Pereira, H. 2020. An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry 180: 112520.
  28. Grunwald, C. 1970. Sterol distribution in intracellular organelles isolated from tobacco leaves. Plant Physiology 45(6): 663-666. https://doi.org/10.1104/pp.45.6.663
  29. Grunwald, C. 1980. Steroids. In: Encyclopedia of Plant Physiology, Ed. by Bell, E.A. and Charlwood, B.V. Springer, Berlin, Germany.
  30. Gutierrez, A., del Rio, J.C., Gonzalez-Vila, F.J., Martin, F. 1999. Chemical composition of lipophilic extractives from Eucalyptus globulus Labill. wood. Holzforschung 53(5): 481-486. https://doi.org/10.1515/HF.1999.079
  31. Gutierrez, A., del Rio, J.C., Rencoret, J., Ibarra, D., Martinez, A.T. 2006. Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediator system. Applied Microbiology and Biotechnology 72(4): 845-851. https://doi.org/10.1007/s00253-006-0346-1
  32. Hafizoglu, H., Holmbom, B., Reunanen, M. 2002. Chemical composition of lipophilic and phenolic constituents of barks from Pinus nigra, Abies bornmulleriana and Castanea sativa. Holzforschung 56: 257-260. https://doi.org/10.1515/HF.2002.042
  33. Ham, Y., Kim, T.J. 2022. Inhibition of biofilm formation in Yersinia enterocolitica by edible plant extracts including Polygoni multiflori radix. Journal of the Korean Wood Science and Technology 50(6): 448-457. https://doi.org/10.5658/WOOD.2022.50.6.448
  34. Hamidah, S., Burhanudin, V., dan Istikowati, W.T. 2009. Study of the basic properties of cinnamon as a consideration for the utilization of cinnamon bark harvesting waste (Cinnamomum burmanii Blume). Jurnal Hutan Tropis Borneo 10(26): 317. 
  35. Hartmann, M.A., Normand, G., Benveniste, P. 1975. Sterol composition of plasma membrane enriched fractions from maize coleoptiles. Plant Science Letters 5(5): 287-292. https://doi.org/10.1016/0304-4211(75)90056-5
  36. Hayes, M.L., Berkovitz, B.K.B. 1979. The reduction of fissure caries in Wistar rats by a soluble salt of nonanoic acid. Archives of Oral Biology 24(9): 663-666. https://doi.org/10.1016/0003-9969(79)90115-8
  37. Hemingway, R.W., Hillis, W.E. 1971. Changes in fats and resins of Pinus radiata associated with heartwood formation. Appita 24(6): 439-443.
  38. Hillinger, C., Holl, W., Ziegler, H. 1996. Lipids and lipolytic enzymes in the trunkwood of Robinia pseudoacacia L. during heartwood formation. Trees 10: 366-375. https://doi.org/10.1007/BF02185640
  39. Hillis, W.E. 1971. Distribution, properties and formation of some wood extractives. Wood Science and Technology 5: 272-289. https://doi.org/10.1007/BF00365060
  40. Hillis, W.E. 1972. Formation and properties of some wood extractives. Phytochemistry 11(4): 1207-1218. https://doi.org/10.1016/S0031-9422(00)90067-0
  41. Hillis, W.E. 1987. Heartwood and Tree Exudates. Springer, Berlin, Germany.
  42. Holl, W., Goller, I. 1982. Free sterols and steryl esters in the trunkwood of Picea abies (L.) Karst. Zeitschrift fur Pflanzenphysiologie 106(5): 409-418. https://doi.org/10.1016/S0044-328X(82)80153-0
  43. Holl, W., Lipp, J. 1987. Concentration gradients of free sterols, steryl esters and lipid phosphorus in the trunkwood of Scot's pine (Pinus sylvestris L.). Trees 1(2): 79-81.
  44. Huh, J.S., Lee, S., Kim, D.S., Choi, M.S., Choi, H., Lee, K.H. 2022. Antioxidative and circadian rhythm regulation effect of Quercus gilva extract. Journal of the Korean Wood Science and Technology 50(5): 338-352. https://doi.org/10.5658/WOOD.2022.50.5.338
  45. International Association of Wood Anatomists [IAWA]. 1964. Multilingual Glossary of Terms Used in Wood Anatomy. IAWA, Zurich, Switzerland.
  46. Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of Raru species originating from Central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429. https://doi.org/10.5658/WOOD.2021.49.5.416
  47. Kampe, A., Magel, E. 2013. New Insights into Heartwood and Heartwood Formation. In: Cellular Aspects of Wood Formation, Ed. by Fromm, J. Springer, Berlin, Germany.
  48. Karimi, E., Jaafar, H.Z.E, Ghasemzadeh, A., Ebrahimi, M. 2015. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biological Research 48(9): 1-6. https://doi.org/10.1186/0717-6287-48-1
  49. Kilulya, K.F., Msagati, T.A.M., Mamba, B.B., Ngila, J.C., Bush, T. 2012. Study of the fate of lipophilic wood extractives during acid sulphite pulping process by ultrasonic solid-liquid extraction and gas chromatography mass spectrometry. Journal of Wood Chemistry and Technology 32(3): 253-267. https://doi.org/10.1080/02773813.2012.659319
  50. Kilulya, K.F., Msagati, T.A.M., Mamba, B.B., Ngila, J.C., Bush, T. 2014. Effect of site, species and tree size on the quantitative variation of lipophilic extractives in Eucalyptus woods used for pulping in South Africa. Industrial Crops and Products 56: 166-174. https://doi.org/10.1016/j.indcrop.2014.02.017
  51. Kiprono, P.C., Kaberia, F., Keriko, J.M., Karanja, J.N. 2000. The in vitro anti-fungal and anti-bacterial activities of β-sitosterol from Senecio lyratus (Asteraceae). Zeitschrift fur Naturforschung C 55(5-6): 485-488. https://doi.org/10.1515/znc-2000-5-629
  52. Lamlom, S.H., Savidge, R.A. 2006. Carbon content variation in boles of mature sugar maple and giant sequoia. Tree Physiology 26(4): 459-468. https://doi.org/10.1093/treephys/26.4.459
  53. Lestari, E., Pramasari, D.A., Amin, Y., Adi, D.S., Bahanawan, A., Dwianto, W. 2016. The chemical components changes of platinum teak wood. In: Bogor, Indonesia, Proceedings of the 6th International Symposium for Sustainable Humanosphere, pp. 165-171.
  54. Lukmandaru, G. 2009. Chemical and colour properties in teak heartwood from three different ages. Journal of Tropical Wood Science and Technology 7(1): 1-7.
  55. Magel, E. 2000. Biochemistry and Physiology of Heart-wood Formation. In: Molecular and Cell Biology of Wood Formation, Ed. by Savidge, R., Barnett, J., and Napier, R. BIOS Scientific, Oxford, UK.
  56. Magel, E., Jay-Allemand, C., Ziegler, H. 1994. Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees 8(4): 165-171. https://doi.org/10.1007/BF00196843
  57. Magel, E.A., Drouet, A., Claudot, A.C., Ziegler, H. 1991. Formation of heartwood substances in the stem of Robinia pseudoacacia L. Trees 5(4): 203-207. https://doi.org/10.1007/BF00227526
  58. Martawijaya, A., Kartasujana, I., Kadir, K., Prawira, S.A. 2005. Atlas Kayu Indonesia Jilid 1. Badan Penelitian Dan Pengembangan Kehutanan, Bogor, Indonesia.
  59. Masendra, M., Purba, B.A.V., Arisandi, R., Lukmandaru, G. 2015. Antifungal and antioxidant activities of lipophilic compounds from Swietenia mahagoni (l.) Jacq. leaves. Wood Research Journal 6(2): 62-68. https://doi.org/10.51850/wrj.2015.6.2.62-68
  60. Masendra, M., Purba, B.A.V., Lukmandaru, G. 2020. Antifungal activity of triterpenoids and steroids isolated from Pinus merkusii bark against Phanerochaete chrysosporium. Wood Research Journal 11(2): 65-71. https://doi.org/10.51850/wrj.2020.11.2.65-71
  61. Masendra, M., Purba, B.A.V., Lukmandaru, G. 2021. An evaluation of the antifungal and antioxidant activity of Pinus merkusii bark ethyl acetate extract. Jurnal Ilmu Kehutanan 15(1): 102-110. https://doi.org/10.22146/jik.v15i1.1494
  62. McGaw, L.J., Jager, A.K., van Staden, J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South African Journal of Botany 68(4): 417-423. https://doi.org/10.1016/S0254-6299(15)30367-7
  63. Metsa-Kortelainen, S., Viitanen, H. 2009. Decay resistance of sapwood and heartwood of untreated and thermally modified scots pine and norway spruce compared with some other wood species. Wood Material Science & Engineering 4(3-4): 105-114.
  64. Miranda, I., Gominho, J., Lourenco, A., Pereira, H. 2006. The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research 36(10): 2675-2683. https://doi.org/10.1139/x06-130
  65. Miranda, I., Pereira, H. 2002. The variation of chemical composition and pulping yield with age and growth factors in young Eucalyptus globulus. Wood and Fiber Science 34(1): 140-145.
  66. Moldeveanu, S.C., David, V. 2018. Derivatization Methods in GC and GC/MS. In: Gas Chromatography: Derivatization, Sample Preparation, Application, Ed. by Kusch, P. IntechOpen, London, UK.
  67. Na, H., Kim, T.J. 2022. Synergistic antifungal activity of Phellodendri cortex and Magnoliae cortex against Candida albicans. Journal of the Korean Wood Science and Technology 50(1): 12-30. https://doi.org/10.5658/WOOD.2022.50.1.12
  68. Parameswaran, N., Bauch, J. 1975. On the origin of phenolic compounds in the wood rays of Abies alba. Wood Science and Technology 9(3): 165-173. https://doi.org/10.1007/BF00364635
  69. Passos, X.S., Castro, A.C.M., Pires, J.S., Garcia, A.C.F., Campos, F.C., Fernandes, O.F.L., Paula, J.R., Ferreira, H.D., Santos, S.C., Ferri, P.H., Silva, M.R. 2003. Composition and antifungal activity of the essential oils of Caryocar brasiliensis. Pharmaceutical Biology 41(5): 319-324. https://doi.org/10.1076/phbi.41.5.319.15936
  70. Piqueras, S., Fuchtner, S., Rocha de Oliveira, R., Gomez-Sanchez, A., Jelavic, S., Keplinger, T., de Juan, A., Thygesen, L.G. 2020. Understanding the formation of heartwood in larch using synchrotron infrared imaging combined with multivariate analysis and atomic force microscope infrared spectroscopy. Frontiers in Plant Science 10: 1701. 
  71. Rastogi, R.P., Mehrotra, B.N. 1993. Compendium of Indian Medicinal Plants, Vol. 2. Lucknow and Publications & Information Directorate, New Delhi, India.
  72. Santana, W.M.S., Calegario, N., Arantes, M.D.C., Trugilho, P.F. 2012. Effect of age and diameter class on the properties of wood from clonal eucalyptus. Cerne 18(1): 1-8. https://doi.org/10.1590/S0104-77602012000100001
  73. Saranpaa, P., Nyberg, H. 1987. Lipids and sterols of Pinus sylvestris L. sapwood and heartwood. Trees 1: 82-87. https://doi.org/10.1007/BF00203575
  74. Sarhean, A.M.Z., Arafa, A.M.S., Habba, E.E., El-Aziz, N.G.A., Mazhar, A.A., Yousef, N.M. 2015. Effect of growing media and microbien on growth and chemical composition of Swietenia mahagoni (L.) Jacq. plants. Journal of Horticulturae Science & Ornamental Plant 7(3): 141-145.
  75. Savero, A.M., Wahyudi, I., Rahayu, I.S., Yunianti, A.D., Ishiguri, F. 2020. Investigating the anatomical and physical-mechanical properties of the 8-year-old superior teakwood planted in Muna Island, Indonesia. Journal of the Korean Wood Science and Technology 48(5): 618-630. https://doi.org/10.5658/WOOD.2020.48.5.618
  76. Seta, G.W., Hidayati, F., Widiyatno, Na'iem, M. 2023. Wood physical and mechanical properties of clonal teak (Tectona grandis) stands under different thinning and pruning intensity levels planted in Java, Indonesia. Journal of the Korean Wood Science and Technology 51(2): 109-132. https://doi.org/10.5658/WOOD.2023.51.2.109
  77. Silverio, F.O., Barbosa, L.C.A., Maltha, C.R.A., Silvestre, A.J.D., Pilo-Veloso, D., Gomide, J.L. 2007. Characterization of lipophilic wood extractives from clones of Eucalyptus urograndis cultivate in Brazil. BioResources 2(2): 157-168. https://doi.org/10.15376/biores.2.2.157-168
  78. Song, K., Liu, B., Jiang, X., Yin, Y. 2011. Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata. Journal of Tropical Forest Science 23(4): 478-487.
  79. Soon, L.K., Chiang, L.K. 2012. Influence of different extraction solvents on lipophilic extractives of Acacia hybrid in different wood portions. Asian Journal of Applied Science 5(2): 107-116. https://doi.org/10.3923/ajaps.2012.107.116
  80. Stumpf, P.K. 1980. Biosynthesis of Saturated and Unsaturated Fatty Acids. In: Lipids: Structure and Function, Ed. by Stumpf, P.K. Academic Press, Cambridge, MA, USA.
  81. Swan, B. 1967. Wood Extractives from Eucalyptus globulus Labill. Sven Papperstidn 70: 239-244.
  82. Trisatya, D.R., Santoso, A., Abdurrachman, A., Prastiwi, D.A. 2023. Performance of six-layered cross laminated timber of fast-growing species glued with tannin resorcinol formaldehyde. Journal of the Korean Wood Science and Technology 51(2): 81-97. https://doi.org/10.5658/WOOD.2023.51.2.81
  83. Wadsworth, F.H., Gonzalez, E. 2008. Sustained mahogany (Swietenia macrophylla) plantation heartwood increment. Forest Ecology and Management 255(2): 320-323. https://doi.org/10.1016/j.foreco.2007.09.053
  84. Won, K.R., Jung, S.Y., Yoo, B.O., Hong, N.E., Byeon, H.S. 2017. Study on red and black heartwood properties of Cryptomeria japonica in southern region of Korea. Journal of the Korean Wood Science and Technology 45(6): 753-761. https://doi.org/10.5658/WOOD.2017.45.6.753
  85. Yang, J., Choi, W.S., Lee, S.Y., Kim, M., Park, M.J. 2022a. Antioxidant activities of essential oils from Citrus × natsudaidai (Yu. Tanaka) hayata peels at different ripening stage. Journal of the Korean Wood Science and Technology 50(4): 272-282. https://doi.org/10.5658/WOOD.2022.50.4.272
  86. Yang, J., Lee, S.Y., Na, H., Jang, S.K., Park, M.J. 2022b. Evaluation of anti-asthmatic activity of essential oils from the Lauraceae family in lipopolysaccharide (LPS)-stimulated NCI-H292 cells. Journal of the Korean Wood Science and Technology 50(6): 414-426. https://doi.org/10.5658/WOOD.2022.50.6.414
  87. Yanti, H., Massijaya, M.Y., Cahyono, T.D., Novriyanti, E., Iswanto, A.H. 2019. Fundamental properties of composite board made with oriented strand board and three different species of veneer. Journal of the Korean Wood Science and Technology 47(2): 239-248. https://doi.org/10.5658/WOOD.2019.47.2.239
  88. Yoon, J., Kim, T.J. 2023. Synergistic growth inhibition of herbal plant extract combinations against Candida albicans. Journal of the Korean Wood Science and Technology 51(2): 145-156.  https://doi.org/10.5658/WOOD.2023.51.2.145