Acknowledgement
TM would like to acknowledge the support received through the Science and Engineering Research Board (Grant no. SRG/2020/001398), India.
References
- Barber, A.H., Andrews, R., Schadler, L.S. and Wagner, H.D. (2005), "On the tensile strength distribution of multiwalled carbon nanotubes", Appl. Phys. Lett., 87(20), 203106. https://doi.org/10.1063/1.2130713
- Bedi, D., Sharma, S. and Tiwari, S.K. (2022), "Effect of chirality and defects on tensile behavior of carbon nanotubes and graphene: Insights from molecular dynamics", Diamond Relat. Mater., 121, 108769. https://doi.org/10.1016/j.diamond.2021.108769
- Chandra, Y., Adhikari, S., Mukherjee, S. and Mukhopadhyay, T. (2022), "Unfolding the mechanical properties of buckypaper composites: Nano to macro scale coupled atomistic-continuum simulations", Eng. Comput., 1-31. https://doi.org/10.1007/s00366-021-01538-w
- Chawla, R. and Sharma, S. (2017), "Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix", Compos. Sci. Technol., 144, 169-177. https://doi.org/10.1016/j.compscitech.2017.03.029
- Chen, W.H., Cheng, H.C. and Liu, Y.L. (2008), "Effects of surface and in-layer van der waals interaction on mechanical properties for carbon nanotubes", Adv. Mater. Res., 33, 993-998. https://doi.org/10.4028/www.scientific.net/AMR.33-37.993
- Chowdhury, S.C. and Okabe, T. (2007), "Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method", Compos. Part A Appl. Sci. Manuf., 38(3), 747-754. https://doi.org/10.1016/j.compositesa.2006.09.011
- Cullinan, M.A. and Culpepper, M.L. (2010), "Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment", Phys. Rev. B, 82(11), 115428. https://doi.org/10.1103/PhysRevB.82.115428
- Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng. A, 334(1-2), 173-178. https://doi.org/10.1017/S1431927606062933
- Dequesnes, M., Tang, Z. and Aluru, N.R., (2004), "Static and dynamic analysis of carbon nanotube-based switches", J. Eng. Mater. Technol., 126(3), 230-237. https://doi.org/10.1115/1.1751180
- Diao, C., Dong, Y. and Lin, J. (2017), "Reactive force field simulation on thermal conductivities of carbon nanotubes and graphene", Int. J. Heat Mass Transfer, 112, 903-912. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.036
- Dilrukshi, K.G.S., Dewapriya, M.A.N. and Puswewala, U.G.A. (2015), "Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics", Theor. Appl. Mech. Lett., 5(4), 167-172. https://doi.org/10.1016/j.taml.2015.05.005
- Dong, J., Salem, D.P., Sun, J.H. and Strano, M.S. (2018), "Analysis of multiplexed nanosensor arrays based on near-infrared fluorescent single-walled carbon nanotubes", ACS Nano, 12(4), 3769-3779. https://doi.org/10.1021/acsnano.8b00980
- Eftekhari, M., Mohammadi, S. and Khoei, A. R. (2013), "Effect of defects on the local shell buckling and post-buckling behavior of single and multiwalled carbon nanotubes", Comput. Mater. Sci., 79, 736-744. https://doi.org/10.1016/j.commatsci.2013.07.034
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection," Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179
- Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. and Bachtold, A. (2011), "Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene", Nature Nanotechnol., 6(6), 339-342. https://doi.org/10.1038/nnano.2011.71
- El-Sherbiny, S.G., Wageh, S., Elhalafawy, S.M. and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., 1(1), 13-27. https://doi.org/10.12989/anr.2013.1.1.013
- Esfarjani, K., Zebarjadi, M. and Kawazoe, Y. (2006), "Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation", Phys. Rev. B, 73(8), 085406. https://doi.org/10.1103/PhysRevB.73.085406
- Etesami, M., Nguyen, M.T., Yonezawa, T., Tuantranont, A., Somwangthanaroj, A. and Kheawhom, S. (2022), "3D carbon nanotubes-graphene hybrids for energy conversion and storage applications", Chem. Eng. J., 446(3), 136370. https://doi.org/10.1016/j.cej.2022.137190
- Fan, Q.Q., Qin, Z.Y., Liang, X., Li, L., Wu, W.H. and Zhu, M.F. (2010), "Reducing defects on multiwalled carbon nanotube surfaces induced by low-power ultrasonic-assisted hydrochloric acid treatment", J. Experim. Nanosci., 5(4), 337-347. https://doi.org/10.1080/17458080903536541
- Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083
- Farshad, K., Simyari, M., Hosseini, S.A., Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157
- Fu, C., Chen, Y. and Jiao, J. (2007), "Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading", Sci. China Series E, 50(1), 7-17. https://doi.org/10.1007/s11431-007-0009-1
- Gaillard, J., Skove, M. and Rao, A. M. (2005), "Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes", Appl. Phys. Lett., 86(23), 233109. https://doi.org/10.1063/1.1946186
- Genoese, A., Genoese, A. and Salerno, G. (2020), "In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential", Acta Mechanica, 231, 2915-2930. https://doi.org/10.1007/s00707-020-02680-0
- Ghavamian, A., Rahmandoust, M. and O chsner, A. (2012), "A numerical evaluation of the influence of defects on the elastic modulus of single and multiwalled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003
- Gupta, K.K., Mukhopadhyay, T., Dey, S. (2023) "Probing the molecular-level energy absorption mechanism and strategic sequencing of graphene/Al composite laminates under high-velocity ballistic impact of nano-projectiles", Appl. Surf. Sci., 629, 156502, https://doi.org/10.1016/j.apsusc.2023.156502
- Gupta, K.K., Mukhopadhyay, T., Roy, A. and Dey, S. (2020), "Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers", J. Mater. Sci. Technol., 50, 44-58. https://doi.org/10.1016/j.jmst.2020.03.004
- Gupta, K.K., Mukhopadhyay, T., Roy, A., Roy, L. and Dey, S. (2021a), "Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping", J. Phys. Chem. Solids, 155, 110111. https://doi.org/10.1016/j.jpcs.2021.110111
- Gupta, K.K., Mukhopadhyay, T., Roy, L. and Dey, S. (2021b), "Hybrid machine learning assisted quantification of the compound internal and external uncertainties of graphene: Towards inclusive analysis and design", Mater. Adv., 3, 1160-1181. https://doi.org/10.1039/D1MA00880C
- Gupta, K.K., Roy, L. and Dey, S. (2022), "Hybrid machine-learning-assisted stochastic nano-indentation behaviour of twisted bilayer graphene", J. Phys. Chem. Solids, 167, 110711. https://doi.org/10.1016/j.jpcs.2022.110711
- Haiquan, W., Zandi, Y., Gholizadeh, M., Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493
- Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Hutchison, G.R. (2012), "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform", J. Cheminform., 4(1), 1-17. https://doi.org/10.1186/1758-2946-4-17
- Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Jensen, B.D., Wise, K.E. and Odegard, G.M. (2015), "The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube", J. Comput. Chem., 36(21), 1587-1596. https://doi.org/10.1002/jcc.23970
- Jinkins, K.R., Chan, J., Jacobberger, R.M., Berson, A. and Arnold, M.S. (2019), "Substrate-wide confined shear alignment of carbon nanotubes for thin film transistors", Adv. Electr. Mater., 5(2), 1800593. https://doi.org/10.1002/aelm.201800593
- Jones, J. E. (1924), "On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), pp.441-462. https://doi.org/10.1098/rspa.1924.0081
- Jyoti, J. and Singh, B.P. (2021), "A review on 3D graphene-carbon nanotube hybrid polymer nanocomposites", J. Mater. Sci., 56(31), 17411-17456. https://doi.org/10.1007/s10853-021-06370-7
- Khan, W., Sharma, R. and Saini, P. (2016), "Carbon nanotube-based polymer composites: synthesis, properties and applications", Carbon Nanotubes Curr. Prog. Polym. Compos. https://doi.org/10.5772/62497
- Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018), "Composites with carbon nanotubes and graphene: An outlook", Science, 362(6414), 547-553. https://doi.org/10.1126/science.aat7439
- Kuznetsov, V.L., Bokova-Sirosh, S.N., Moseenkov, S.I., Ishchenko, A.V., Krasnikov, D.V., Kazakova, M.A., Romanenko, A.I. and Obraztsova, E.D. (2014), "Raman spectra for characterization of defective CVD multiwalled carbon nanotubes", Physica Status Solidi B, 251(12), 2444-2450. https://doi.org/10.1002/pssb.201451195
- Li, F., Cheng, H.M., Bai, S., Su, G. and Dresselhaus, M.S. (2000), "Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes", Appl. Phys. Lett., 77(20), 3161-3163. https://doi.org/10.1063/1.1324984
- Li, Y., Wang, Q. and Wang, S. (2019), "A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations", Compos. Part B Eng., 160, 348-361. https://doi.org/10.1016/j.compositesb.2018.12.026
- Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multiwalled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043
- Lindsay, L. and Broido, D.A. (2010), "Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene", Phys. Rev. B, 81(20), 205441. https://doi.org/10.1103/PhysRevB.81.205441
- Liu, Z., Dai, S., Wang, Y., Yang, B., Hao, D., Liu, D. and Huang, J. (2020), "Photoresponsive transistors based on lead-free perovskite and carbon nanotubes", Adv. Funct. Mater., 30(3), 1906335. https://doi.org/10.1002/adfm.201906335
- Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H. and Zhang, X., (2011), "Poptube approach for ultrafast carbon nanotube growth", Chem. Commun., 47(35), 9912-9914. https://doi.org/10.1039/C1CC13359D
- Lv, Q., Wang, Z., Chen, S., Li, C., Sun, S. and Hu, S. (2017), "Effects of single adatom and Stone-Wales defects on the elastic properties of carbon nanotube/polypropylene composites: a molecular simulation study", Int. J. Mech. Sci., 131, 527-534. https://doi.org/10.1016/j.ijmecsci.2017.08.001
- Merino, C.A.I., Sillas, J.L., Meza, J.M. and Ramirez, J.H. (2017), "Metal matrix composites reinforced with carbon nanotubes by an alternative technique", J. Alloy Compd., 707, 257-263. https://doi.org/10.1016/j.jallcom.2016.11.348
- Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R. and Belytschko, T. (2004), "The role of vacancy defects and holes in the fracture of carbon nanotubes", Chem. Phys. Lett., 390(4-6), 413-420. https://doi.org/10.1016/j.cplett.2004.04.054
- Mortazavi, B., Fan, Z., Pereira, L.F.C., Harju, A. and Rabczuk, T. (2016), "Amorphized graphene: a stiff material with low thermal conductivity", Carbon, 103, 318-326. https://doi.org/10.1016/j.carbon.2016.03.007
- Mukherjee, R., Abhay V.T., Datta, D., Singh, E., Li, J., Eksik, O., Shenoy, V.K., Koratkar, N., (2014), "Defect-induced plating of lithium metal within porous graphene networks", Nature Commun., 5, 1-10. https://doi.org/10.1038/ncomms4710
- Mukhopadhyay, T., Ma, J., Feng, H., Hou, D., Gattas, J. M., Chen, Y. and You, Z. (2020), "Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature", Appl. Mater. Today, 19, 100537. https://doi.org/10.1016/j.apmt.2019.100537
- Mukhopadhyay, T., Mahata, A., Adhikari, S., Asle Zaeem, M. (2017), "Effective mechanical properties of multilayer nanoheterostructures", Sci. Rep., 7, 15818. https://doi.org/10.1038/s41598-017-15664-3
- Mukhopadhyay, T., Mahata, A., Naskar, S., Adhikari, S. (2020), "Probing the effective Young's modulus of 'magic angle' inspired multi-functional twisted nano-heterostructures", Adv. Theory Simul., 3(10), 2000129. https://doi.org/10.1002/adts.202000129
- Nakai, Y., Honda, K., Yanagi, K., Kataura, H., Kato, T., Yamamoto, T. and Maniwa, Y. (2014), "Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film", Appl. Phys. Express, 7(2), 025103. https://doi.org/10.7567/APEX.7.025103
- Ogata, S. and Shibutani, Y. (2003), "Ideal tensile strength and band gap of single-walled carbon nanotubes", Phys. Rev. B, 68(16), 165409. https://doi.org/10.1103/PhysRevB.68.165409
- Ohnishi, M., Suzuki, K. and Miura, H. (2016), "Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes", Nano Res., 9, 1267-1275. https://doi.org/10.1007/s12274-016-1022-0
- Omer, C., Uzun, B., Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2) 91-104. https://doi.org/10.12989/anr.2020.9.2.091
- Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G. C. and Espinosa, H. D. (2008), "Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements", Nature Nanotechnol., 3(10), 626-631. https://doi.org/10.1038/nnano.2008.211
- Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
- Qian, D., Wagner, and, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129
- Qian, Z.S., Shan, X.Y., Chai, L.J., Ma, J.J., Chen, J.R. and Feng, H. (2014), "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes", Biosens. Bioelectr., 60, 64-70. https://doi.org/10.1016/j.bios.2014.04.006
- Rafiee, R. and Pourazizi, R. (2014), "Evaluating the influence of defects on the young's modulus of carbon nanotubes using stochastic modeling", Mater. Res., 17(3), 758-766. https://doi.org/10.1590/S1516-14392014005000071
- Rajasekaran, G., Kumar, R. and Parashar, A. (2016), "Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment", Mater. Res. Express, 3(3), 035011. https://doi.org/10.1088/2053-1591/3/3/035011
- Rao, P.S., Anandatheertha, S., Naik, G.N. and Gopalakrishnan, S. (2015), "Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach", Sadhana, 40(4), 1301-1311. https://doi.org/10.1007/s12046-015-0367-5
- Rao, R., Pint, C.L., Islam, A.E., Weatherup, R.S., Hofmann, S., Meshot, E.R., ... Hart, A.J. (2018), "Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications", ACS Nano, 12(12), 11756-11784. https://doi.org/10.1021/acsnano.8b06511
- Robertson, A.W. and Warner, J.H. (2013), "Atomic resolution imaging of graphene by transmission electron microscopy", Nano-scale, 5(10), 4079-4093. https://doi.org/10.1039/C3NR00934C
- Robertson, A.W., Allen, C.S., Wu, Y.A., He, K., Olivier, J., Neethling, J. and Warner, J.H. (2012), "Spatial control of defect creation in graphene at the nano-scale", Nature Commun., 3(1), 1-7. https://doi.org/10.1038/ncomms2141
- Roy, A., Gupta, K.K. and Dey, S. (2022), "Probabilistic investigation of temperature-dependent vibrational behavior of hetero-nanotubes", Appl. Nanosci., 1-13. https://doi.org/10.1007/s13204-022-02487-6
- Roy, A., Gupta, K. K., Naskar, S., Mukhopadhyay, T. and Dey, S. (2021), "Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs", Mater. Today Commun., 26, 102021. https://doi.org/10.1016/j.mtcomm.2021.102021
- Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999
- Saumya, K., Naskar, S., Mukhopadhyay, T. (2023) "'Magic' of twisted multi-layered graphene and 2D nano-heterostructures", Nano Futures, 7, 032005. https://doi.org/10.1088/2399-1984/acf0a9
- Savin, A.V. and Mazo, M.A. (2020), "The COMPASS force field: Validation for carbon nanoribbons", Physica E: Low Dimension. Syst. Nanostruct., 118, 113937. https://doi.org/10.1016/j.physe.2019.113937
- Saxena, K.K. and Lal, A. (2012), "Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects", Procedia Eng., 38, 2347-2355. https://doi.org/10.1016/j.proeng.2012.06.280
- Seifoori, S., Abbaspour, F. and Zamani, E. (2020), "Molecular dynamics simulation of impact behavior in multiwalled carbon nanotubes", Superlatt. Microstruct., 140, 106447. https://doi.org/10.1016/j.spmi.2020.106447
- Sharma, S., Chandra, R., Kumar, P. and Kumar, N. (2013), "Molecular dynamics simulation of carbon nanotubes", Nanosci. Technol. Int. J., 4(1), 29-45. https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v4.i1.20
- Sinha, P. and Mukhopadhyay, T. (2023) "Programmable multi-physical mechanics of mechanical metamaterials", Mater. Sci. Eng. R, 155, 100745, https://doi.org/10.1016/j.mser.2023.100745
- Stukowski, A. (2009), "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool", Modell. Simul. Mater. Sci. Eng., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
- Sun, D.M., Timmermans, M.Y., Tian, Y., Nasibulin, A.G., Kauppinen, E.I., Kishimoto, S., Mizutani, T. and Ohno, Y. (2011), "Flexible high-performance carbon nanotube integrated circuits", Nature Nanotechnol., 6(3), 156-161. https://doi.org/10.1038/nnano.2011.1
- Sun, X. and Wang, Y. (2002), "Mechanical properties of carbon nanotubes", ASME Int. Mech. Eng. Congr. Expos., 36517, 53-57. https://doi.org/10.1115/IMECE2002-39484
- Talukdar, K. and Mitra, A.K. (2012), "A molecular dynamics simulation study for the mechanical properties of different types of carbon nanotubes", Appl. Nanosci., 2(3), 377-383. https://doi.org/10.1007/s13204-012-0110-z
- Tao, F., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X., Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559
- Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Phys. Rev. B, 38(14), 9902. https://doi.org/10.1103/PhysRevB.38.9902
- Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
- Wang, L., Boutilier, M.S., Kidambi, P.R., Jang, D., Hadjiconstantinou, N.G. and Karnik, R. (2017), "Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes", Nature Nanotechnol., 12(6), 509.https://doi.org/10.1038/nnano.2017.72
- Wang, Q. and Arash, B. (2014), "A review on applications of carbon nanotubes and graphenes as nano-resonator sensors", Comput. Mater. Sci., 82, 350-360. https://doi.org/10.1016/j.commatsci.2013.10.010
- Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
- Xie, S., Li, W., Pan, Z., Chang, B. and Sun, L. (2000), "Mechanical and physical properties on carbon nanotube", J. Phys. Chem. Solids, 61(7), 1153-1158. https://doi.org/10.1016/S0022-3697(99)00376-5
- Yang, M., Koutsos, V. and Zaiser, M. (2007), "Size effect in the tensile fracture of single-walled carbon nanotubes with defects", Nanotechnology, 18(15), 155708. https://doi.org/10.1088/0957-4484/18/15/155708
- Yao, Z., Zhu, C.C., Cheng, M. and Liu, J. (2001), "Mechanical properties of carbon nanotube by molecular dynamics simulation", Comput. Mater. Sci., 22(3-4), 180-184. https://doi.org/10.1016/S0927-0256(01)00187-2
- Yazdani, H., Hatami, K. and Eftekhari, M. (2017), "Mechanical properties of single-walled carbon nanotubes: a comprehensive molecular dynamics study", Mater. Res. Express, 4(5), 055015. https://doi.org/10.1088/2053-1591/aa7003
- Yilmazoglu, O., Popp, A., Pavlidis, D., Schneider, J.J., Garth, D., Schuttler, F. and Battenberg, G. (2012), "Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing", Nanotechnology, 23(8), 085501. https://doi.org/10.1088/0957-4484/23/8/085501
- Yin, Y., Liu, C. and Fan, S. (2012), "Well-constructed CNT mesh/PANI nanoporous electrode and its thickness effect on the supercapacitor properties", J. Phys. Chem. C, 116(50), 26185-26189. https://doi.org/10.1021/jp3083387
- Yousif, M.Y.A., Lundgren, P., Ghavanini, F., Enoksson, P. and Bengtsson, S. (2008), "CMOS considerations in nanoelectron-mechanical carbon nanotube-based switches", Nanotechnol., 19(28), 285204. https://doi.org/10.1088/0957-4484/19/28/285204
- Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Science, 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637
- Yuan, Q., Xu, Z., Yakobson, B.I. and Ding, F. (2012), "Efficient defect healing in catalytic carbon nanotube growth", Phys. Rev. Lett., 108(24), 245505. https://doi.org/10.1103/PhysRevLett.108.245505
- Zhang, H., Zhou, Z., Qiu, J., Chen, P. and Sun, W. (2021), "Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study", Compos. Commun., 28, 100911. https://doi.org/10.1016/j.coco.2021.100911