DOI QR코드

DOI QR Code

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy (Department of Mechanical Engineering, National Institute of Technology Silchar) ;
  • K. K. Gupta (Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham) ;
  • S. Dey (Department of Mechanical Engineering, National Institute of Technology Silchar) ;
  • T. Mukhopadhyay (Department of Aeronautics and Astronautics, University of Southampton)
  • Received : 2022.05.18
  • Accepted : 2023.12.04
  • Published : 2024.01.25

Abstract

Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.

Keywords

Acknowledgement

TM would like to acknowledge the support received through the Science and Engineering Research Board (Grant no. SRG/2020/001398), India.

References

  1. Barber, A.H., Andrews, R., Schadler, L.S. and Wagner, H.D. (2005), "On the tensile strength distribution of multiwalled carbon nanotubes", Appl. Phys. Lett., 87(20), 203106. https://doi.org/10.1063/1.2130713
  2. Bedi, D., Sharma, S. and Tiwari, S.K. (2022), "Effect of chirality and defects on tensile behavior of carbon nanotubes and graphene: Insights from molecular dynamics", Diamond Relat. Mater., 121, 108769. https://doi.org/10.1016/j.diamond.2021.108769
  3. Chandra, Y., Adhikari, S., Mukherjee, S. and Mukhopadhyay, T. (2022), "Unfolding the mechanical properties of buckypaper composites: Nano to macro scale coupled atomistic-continuum simulations", Eng. Comput., 1-31. https://doi.org/10.1007/s00366-021-01538-w
  4. Chawla, R. and Sharma, S. (2017), "Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix", Compos. Sci. Technol., 144, 169-177. https://doi.org/10.1016/j.compscitech.2017.03.029
  5. Chen, W.H., Cheng, H.C. and Liu, Y.L. (2008), "Effects of surface and in-layer van der waals interaction on mechanical properties for carbon nanotubes", Adv. Mater. Res., 33, 993-998. https://doi.org/10.4028/www.scientific.net/AMR.33-37.993
  6. Chowdhury, S.C. and Okabe, T. (2007), "Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method", Compos. Part A Appl. Sci. Manuf., 38(3), 747-754. https://doi.org/10.1016/j.compositesa.2006.09.011
  7. Cullinan, M.A. and Culpepper, M.L. (2010), "Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment", Phys. Rev. B, 82(11), 115428. https://doi.org/10.1103/PhysRevB.82.115428
  8. Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng. A, 334(1-2), 173-178. https://doi.org/10.1017/S1431927606062933
  9. Dequesnes, M., Tang, Z. and Aluru, N.R., (2004), "Static and dynamic analysis of carbon nanotube-based switches", J. Eng. Mater. Technol., 126(3), 230-237. https://doi.org/10.1115/1.1751180
  10. Diao, C., Dong, Y. and Lin, J. (2017), "Reactive force field simulation on thermal conductivities of carbon nanotubes and graphene", Int. J. Heat Mass Transfer, 112, 903-912. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.036
  11. Dilrukshi, K.G.S., Dewapriya, M.A.N. and Puswewala, U.G.A. (2015), "Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics", Theor. Appl. Mech. Lett., 5(4), 167-172. https://doi.org/10.1016/j.taml.2015.05.005
  12. Dong, J., Salem, D.P., Sun, J.H. and Strano, M.S. (2018), "Analysis of multiplexed nanosensor arrays based on near-infrared fluorescent single-walled carbon nanotubes", ACS Nano, 12(4), 3769-3779. https://doi.org/10.1021/acsnano.8b00980
  13. Eftekhari, M., Mohammadi, S. and Khoei, A. R. (2013), "Effect of defects on the local shell buckling and post-buckling behavior of single and multiwalled carbon nanotubes", Comput. Mater. Sci., 79, 736-744. https://doi.org/10.1016/j.commatsci.2013.07.034
  14. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection," Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179
  15. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. and Bachtold, A. (2011), "Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene", Nature Nanotechnol., 6(6), 339-342. https://doi.org/10.1038/nnano.2011.71
  16. El-Sherbiny, S.G., Wageh, S., Elhalafawy, S.M. and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., 1(1), 13-27. https://doi.org/10.12989/anr.2013.1.1.013
  17. Esfarjani, K., Zebarjadi, M. and Kawazoe, Y. (2006), "Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation", Phys. Rev. B, 73(8), 085406. https://doi.org/10.1103/PhysRevB.73.085406
  18. Etesami, M., Nguyen, M.T., Yonezawa, T., Tuantranont, A., Somwangthanaroj, A. and Kheawhom, S. (2022), "3D carbon nanotubes-graphene hybrids for energy conversion and storage applications", Chem. Eng. J., 446(3), 136370. https://doi.org/10.1016/j.cej.2022.137190
  19. Fan, Q.Q., Qin, Z.Y., Liang, X., Li, L., Wu, W.H. and Zhu, M.F. (2010), "Reducing defects on multiwalled carbon nanotube surfaces induced by low-power ultrasonic-assisted hydrochloric acid treatment", J. Experim. Nanosci., 5(4), 337-347. https://doi.org/10.1080/17458080903536541
  20. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083
  21. Farshad, K., Simyari, M., Hosseini, S.A., Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157
  22. Fu, C., Chen, Y. and Jiao, J. (2007), "Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading", Sci. China Series E, 50(1), 7-17. https://doi.org/10.1007/s11431-007-0009-1
  23. Gaillard, J., Skove, M. and Rao, A. M. (2005), "Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes", Appl. Phys. Lett., 86(23), 233109. https://doi.org/10.1063/1.1946186
  24. Genoese, A., Genoese, A. and Salerno, G. (2020), "In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential", Acta Mechanica, 231, 2915-2930. https://doi.org/10.1007/s00707-020-02680-0
  25. Ghavamian, A., Rahmandoust, M. and O chsner, A. (2012), "A numerical evaluation of the influence of defects on the elastic modulus of single and multiwalled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003
  26. Gupta, K.K., Mukhopadhyay, T., Dey, S. (2023) "Probing the molecular-level energy absorption mechanism and strategic sequencing of graphene/Al composite laminates under high-velocity ballistic impact of nano-projectiles", Appl. Surf. Sci., 629, 156502, https://doi.org/10.1016/j.apsusc.2023.156502
  27. Gupta, K.K., Mukhopadhyay, T., Roy, A. and Dey, S. (2020), "Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers", J. Mater. Sci. Technol., 50, 44-58. https://doi.org/10.1016/j.jmst.2020.03.004
  28. Gupta, K.K., Mukhopadhyay, T., Roy, A., Roy, L. and Dey, S. (2021a), "Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping", J. Phys. Chem. Solids, 155, 110111. https://doi.org/10.1016/j.jpcs.2021.110111
  29. Gupta, K.K., Mukhopadhyay, T., Roy, L. and Dey, S. (2021b), "Hybrid machine learning assisted quantification of the compound internal and external uncertainties of graphene: Towards inclusive analysis and design", Mater. Adv., 3, 1160-1181. https://doi.org/10.1039/D1MA00880C
  30. Gupta, K.K., Roy, L. and Dey, S. (2022), "Hybrid machine-learning-assisted stochastic nano-indentation behaviour of twisted bilayer graphene", J. Phys. Chem. Solids, 167, 110711. https://doi.org/10.1016/j.jpcs.2022.110711
  31. Haiquan, W., Zandi, Y., Gholizadeh, M., Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493
  32. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Hutchison, G.R. (2012), "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform", J. Cheminform., 4(1), 1-17. https://doi.org/10.1186/1758-2946-4-17
  33. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  34. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  35. Jensen, B.D., Wise, K.E. and Odegard, G.M. (2015), "The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube", J. Comput. Chem., 36(21), 1587-1596. https://doi.org/10.1002/jcc.23970
  36. Jinkins, K.R., Chan, J., Jacobberger, R.M., Berson, A. and Arnold, M.S. (2019), "Substrate-wide confined shear alignment of carbon nanotubes for thin film transistors", Adv. Electr. Mater., 5(2), 1800593. https://doi.org/10.1002/aelm.201800593
  37. Jones, J. E. (1924), "On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), pp.441-462. https://doi.org/10.1098/rspa.1924.0081
  38. Jyoti, J. and Singh, B.P. (2021), "A review on 3D graphene-carbon nanotube hybrid polymer nanocomposites", J. Mater. Sci., 56(31), 17411-17456. https://doi.org/10.1007/s10853-021-06370-7
  39. Khan, W., Sharma, R. and Saini, P. (2016), "Carbon nanotube-based polymer composites: synthesis, properties and applications", Carbon Nanotubes Curr. Prog. Polym. Compos. https://doi.org/10.5772/62497
  40. Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018), "Composites with carbon nanotubes and graphene: An outlook", Science, 362(6414), 547-553. https://doi.org/10.1126/science.aat7439
  41. Kuznetsov, V.L., Bokova-Sirosh, S.N., Moseenkov, S.I., Ishchenko, A.V., Krasnikov, D.V., Kazakova, M.A., Romanenko, A.I. and Obraztsova, E.D. (2014), "Raman spectra for characterization of defective CVD multiwalled carbon nanotubes", Physica Status Solidi B, 251(12), 2444-2450. https://doi.org/10.1002/pssb.201451195
  42. Li, F., Cheng, H.M., Bai, S., Su, G. and Dresselhaus, M.S. (2000), "Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes", Appl. Phys. Lett., 77(20), 3161-3163. https://doi.org/10.1063/1.1324984
  43. Li, Y., Wang, Q. and Wang, S. (2019), "A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations", Compos. Part B Eng., 160, 348-361. https://doi.org/10.1016/j.compositesb.2018.12.026
  44. Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multiwalled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043
  45. Lindsay, L. and Broido, D.A. (2010), "Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene", Phys. Rev. B, 81(20), 205441. https://doi.org/10.1103/PhysRevB.81.205441
  46. Liu, Z., Dai, S., Wang, Y., Yang, B., Hao, D., Liu, D. and Huang, J. (2020), "Photoresponsive transistors based on lead-free perovskite and carbon nanotubes", Adv. Funct. Mater., 30(3), 1906335. https://doi.org/10.1002/adfm.201906335
  47. Liu, Z., Wang, J., Kushvaha, V., Poyraz, S., Tippur, H., Park, S., Kim, M., Liu, Y., Bar, J., Chen, H. and Zhang, X., (2011), "Poptube approach for ultrafast carbon nanotube growth", Chem. Commun., 47(35), 9912-9914. https://doi.org/10.1039/C1CC13359D
  48. Lv, Q., Wang, Z., Chen, S., Li, C., Sun, S. and Hu, S. (2017), "Effects of single adatom and Stone-Wales defects on the elastic properties of carbon nanotube/polypropylene composites: a molecular simulation study", Int. J. Mech. Sci., 131, 527-534. https://doi.org/10.1016/j.ijmecsci.2017.08.001
  49. Merino, C.A.I., Sillas, J.L., Meza, J.M. and Ramirez, J.H. (2017), "Metal matrix composites reinforced with carbon nanotubes by an alternative technique", J. Alloy Compd., 707, 257-263. https://doi.org/10.1016/j.jallcom.2016.11.348
  50. Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S., Car, R. and Belytschko, T. (2004), "The role of vacancy defects and holes in the fracture of carbon nanotubes", Chem. Phys. Lett., 390(4-6), 413-420. https://doi.org/10.1016/j.cplett.2004.04.054
  51. Mortazavi, B., Fan, Z., Pereira, L.F.C., Harju, A. and Rabczuk, T. (2016), "Amorphized graphene: a stiff material with low thermal conductivity", Carbon, 103, 318-326. https://doi.org/10.1016/j.carbon.2016.03.007
  52. Mukherjee, R., Abhay V.T., Datta, D., Singh, E., Li, J., Eksik, O., Shenoy, V.K., Koratkar, N., (2014), "Defect-induced plating of lithium metal within porous graphene networks", Nature Commun., 5, 1-10. https://doi.org/10.1038/ncomms4710
  53. Mukhopadhyay, T., Ma, J., Feng, H., Hou, D., Gattas, J. M., Chen, Y. and You, Z. (2020), "Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature", Appl. Mater. Today, 19, 100537. https://doi.org/10.1016/j.apmt.2019.100537
  54. Mukhopadhyay, T., Mahata, A., Adhikari, S., Asle Zaeem, M. (2017), "Effective mechanical properties of multilayer nanoheterostructures", Sci. Rep., 7, 15818. https://doi.org/10.1038/s41598-017-15664-3
  55. Mukhopadhyay, T., Mahata, A., Naskar, S., Adhikari, S. (2020), "Probing the effective Young's modulus of 'magic angle' inspired multi-functional twisted nano-heterostructures", Adv. Theory Simul., 3(10), 2000129. https://doi.org/10.1002/adts.202000129
  56. Nakai, Y., Honda, K., Yanagi, K., Kataura, H., Kato, T., Yamamoto, T. and Maniwa, Y. (2014), "Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film", Appl. Phys. Express, 7(2), 025103. https://doi.org/10.7567/APEX.7.025103
  57. Ogata, S. and Shibutani, Y. (2003), "Ideal tensile strength and band gap of single-walled carbon nanotubes", Phys. Rev. B, 68(16), 165409. https://doi.org/10.1103/PhysRevB.68.165409
  58. Ohnishi, M., Suzuki, K. and Miura, H. (2016), "Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes", Nano Res., 9, 1267-1275. https://doi.org/10.1007/s12274-016-1022-0
  59. Omer, C., Uzun, B., Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2) 91-104. https://doi.org/10.12989/anr.2020.9.2.091
  60. Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G. C. and Espinosa, H. D. (2008), "Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements", Nature Nanotechnol., 3(10), 626-631. https://doi.org/10.1038/nnano.2008.211
  61. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
  62. Qian, D., Wagner, and, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129
  63. Qian, Z.S., Shan, X.Y., Chai, L.J., Ma, J.J., Chen, J.R. and Feng, H. (2014), "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes", Biosens. Bioelectr., 60, 64-70. https://doi.org/10.1016/j.bios.2014.04.006
  64. Rafiee, R. and Pourazizi, R. (2014), "Evaluating the influence of defects on the young's modulus of carbon nanotubes using stochastic modeling", Mater. Res., 17(3), 758-766. https://doi.org/10.1590/S1516-14392014005000071
  65. Rajasekaran, G., Kumar, R. and Parashar, A. (2016), "Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment", Mater. Res. Express, 3(3), 035011. https://doi.org/10.1088/2053-1591/3/3/035011
  66. Rao, P.S., Anandatheertha, S., Naik, G.N. and Gopalakrishnan, S. (2015), "Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach", Sadhana, 40(4), 1301-1311. https://doi.org/10.1007/s12046-015-0367-5
  67. Rao, R., Pint, C.L., Islam, A.E., Weatherup, R.S., Hofmann, S., Meshot, E.R., ... Hart, A.J. (2018), "Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications", ACS Nano, 12(12), 11756-11784. https://doi.org/10.1021/acsnano.8b06511
  68. Robertson, A.W. and Warner, J.H. (2013), "Atomic resolution imaging of graphene by transmission electron microscopy", Nano-scale, 5(10), 4079-4093. https://doi.org/10.1039/C3NR00934C
  69. Robertson, A.W., Allen, C.S., Wu, Y.A., He, K., Olivier, J., Neethling, J. and Warner, J.H. (2012), "Spatial control of defect creation in graphene at the nano-scale", Nature Commun., 3(1), 1-7. https://doi.org/10.1038/ncomms2141
  70. Roy, A., Gupta, K.K. and Dey, S. (2022), "Probabilistic investigation of temperature-dependent vibrational behavior of hetero-nanotubes", Appl. Nanosci., 1-13. https://doi.org/10.1007/s13204-022-02487-6
  71. Roy, A., Gupta, K. K., Naskar, S., Mukhopadhyay, T. and Dey, S. (2021), "Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs", Mater. Today Commun., 26, 102021. https://doi.org/10.1016/j.mtcomm.2021.102021
  72. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999
  73. Saumya, K., Naskar, S., Mukhopadhyay, T. (2023) "'Magic' of twisted multi-layered graphene and 2D nano-heterostructures", Nano Futures, 7, 032005. https://doi.org/10.1088/2399-1984/acf0a9
  74. Savin, A.V. and Mazo, M.A. (2020), "The COMPASS force field: Validation for carbon nanoribbons", Physica E: Low Dimension. Syst. Nanostruct., 118, 113937. https://doi.org/10.1016/j.physe.2019.113937
  75. Saxena, K.K. and Lal, A. (2012), "Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects", Procedia Eng., 38, 2347-2355. https://doi.org/10.1016/j.proeng.2012.06.280
  76. Seifoori, S., Abbaspour, F. and Zamani, E. (2020), "Molecular dynamics simulation of impact behavior in multiwalled carbon nanotubes", Superlatt. Microstruct., 140, 106447. https://doi.org/10.1016/j.spmi.2020.106447
  77. Sharma, S., Chandra, R., Kumar, P. and Kumar, N. (2013), "Molecular dynamics simulation of carbon nanotubes", Nanosci. Technol. Int. J., 4(1), 29-45. https://doi.org/10.1615/NanomechanicsSciTechnolIntJ.v4.i1.20
  78. Sinha, P. and Mukhopadhyay, T. (2023) "Programmable multi-physical mechanics of mechanical metamaterials", Mater. Sci. Eng. R, 155, 100745, https://doi.org/10.1016/j.mser.2023.100745
  79. Stukowski, A. (2009), "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool", Modell. Simul. Mater. Sci. Eng., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  80. Sun, D.M., Timmermans, M.Y., Tian, Y., Nasibulin, A.G., Kauppinen, E.I., Kishimoto, S., Mizutani, T. and Ohno, Y. (2011), "Flexible high-performance carbon nanotube integrated circuits", Nature Nanotechnol., 6(3), 156-161. https://doi.org/10.1038/nnano.2011.1
  81. Sun, X. and Wang, Y. (2002), "Mechanical properties of carbon nanotubes", ASME Int. Mech. Eng. Congr. Expos., 36517, 53-57. https://doi.org/10.1115/IMECE2002-39484
  82. Talukdar, K. and Mitra, A.K. (2012), "A molecular dynamics simulation study for the mechanical properties of different types of carbon nanotubes", Appl. Nanosci., 2(3), 377-383. https://doi.org/10.1007/s13204-012-0110-z
  83. Tao, F., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X., Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559
  84. Tersoff, J. (1988), "Empirical interatomic potential for silicon with improved elastic properties", Phys. Rev. B, 38(14), 9902. https://doi.org/10.1103/PhysRevB.38.9902
  85. Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
  86. Wang, L., Boutilier, M.S., Kidambi, P.R., Jang, D., Hadjiconstantinou, N.G. and Karnik, R. (2017), "Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes", Nature Nanotechnol., 12(6), 509.https://doi.org/10.1038/nnano.2017.72
  87. Wang, Q. and Arash, B. (2014), "A review on applications of carbon nanotubes and graphenes as nano-resonator sensors", Comput. Mater. Sci., 82, 350-360. https://doi.org/10.1016/j.commatsci.2013.10.010
  88. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  89. Xie, S., Li, W., Pan, Z., Chang, B. and Sun, L. (2000), "Mechanical and physical properties on carbon nanotube", J. Phys. Chem. Solids, 61(7), 1153-1158. https://doi.org/10.1016/S0022-3697(99)00376-5
  90. Yang, M., Koutsos, V. and Zaiser, M. (2007), "Size effect in the tensile fracture of single-walled carbon nanotubes with defects", Nanotechnology, 18(15), 155708. https://doi.org/10.1088/0957-4484/18/15/155708
  91. Yao, Z., Zhu, C.C., Cheng, M. and Liu, J. (2001), "Mechanical properties of carbon nanotube by molecular dynamics simulation", Comput. Mater. Sci., 22(3-4), 180-184. https://doi.org/10.1016/S0927-0256(01)00187-2
  92. Yazdani, H., Hatami, K. and Eftekhari, M. (2017), "Mechanical properties of single-walled carbon nanotubes: a comprehensive molecular dynamics study", Mater. Res. Express, 4(5), 055015. https://doi.org/10.1088/2053-1591/aa7003
  93. Yilmazoglu, O., Popp, A., Pavlidis, D., Schneider, J.J., Garth, D., Schuttler, F. and Battenberg, G. (2012), "Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing", Nanotechnology, 23(8), 085501. https://doi.org/10.1088/0957-4484/23/8/085501
  94. Yin, Y., Liu, C. and Fan, S. (2012), "Well-constructed CNT mesh/PANI nanoporous electrode and its thickness effect on the supercapacitor properties", J. Phys. Chem. C, 116(50), 26185-26189. https://doi.org/10.1021/jp3083387
  95. Yousif, M.Y.A., Lundgren, P., Ghavanini, F., Enoksson, P. and Bengtsson, S. (2008), "CMOS considerations in nanoelectron-mechanical carbon nanotube-based switches", Nanotechnol., 19(28), 285204. https://doi.org/10.1088/0957-4484/19/28/285204
  96. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Science, 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637
  97. Yuan, Q., Xu, Z., Yakobson, B.I. and Ding, F. (2012), "Efficient defect healing in catalytic carbon nanotube growth", Phys. Rev. Lett., 108(24), 245505. https://doi.org/10.1103/PhysRevLett.108.245505
  98. Zhang, H., Zhou, Z., Qiu, J., Chen, P. and Sun, W. (2021), "Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study", Compos. Commun., 28, 100911. https://doi.org/10.1016/j.coco.2021.100911