과제정보
The authors would like to thank the Dean-School of Civil Engineering, Vellore Institute of Technology, Chennai, India, for providing support and lab facilities to carry out this research. We thank the "DST and SAIF/IIT/M", "Centre for Nanoscience and Technology, Anna University", "STIC CUSAT", "National Centre for Earth Science Studies - Thiruvananthapuram", "School of Advanced Sciences, VIT-Chennai", for providing the analytical services. We would like to acknowledge "Dr. Shanmuga Sundaram, VIT-Chennai", for providing valuable ideas during the research phase.
참고문헌
- Abbas-Abadi, M.S., Kusenberg, M., Shirazi, H.M., Goshayeshi, B. and Van Geem, K.M. (2022), "Towards full recyclability of end-of-life tires: Challenges and opportunities", J. Clean. Prod., 374, 134036. https://doi.org/10.1016/j.jclepro.2022.134036.
- Adar, F. (2016), "Introduction to interpretation of raman spectra using database searching and functional group detection and identification", Spectroscopy, 31(7), 16-23.
- Adar, F. (2022), "Use of raman spectroscopy to qualify carbon materials", Spectroscopy, 37(6), 11-15, 50. https://doi.org/10.56530/spectroscopy.wx3481u2.
- Al-Fa'ouri, A.M., Lafi, O.A., Abu-Safe, H.H. and Abu-Kharma, M. (2023), "Investigation of optical and electrical properties of copper oxide - polyvinyl alcohol nanocomposites for solar cell applications", Arab. J. Chem., 16(4), 104535. https://doi.org/10.1016/j.arabjc.2022.104535.
- Banasiak, L., Chiaro, G., Palermo, A. and Granello, G. (2019), "Recycling of end-of-life tyres in civil engineering application: Environmental implications", Nucl. Phys., 13(1), 104-116.
- Barhoum, A., Garcia-Betancourt, M.L., Rahier, H. and Van Assche, G. (2018), "Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability", Emerging Applications of Nanoparticles and Architectural Nanostructures, Elsevier, Netherlands.
- Chaala, A., Roy, C. and Ait-Kadi, A. (1996), "Rheological properties of bitumen modified with pyrolytic carbon black", Fuel, 75(13), 1575-1583. https://doi.org/10.1016/0016-2361(96)00143-3.
- Chia, C.H., Gong, B., Joseph, S.D., Marjo, C.E., Munroe, P. and Rich, A.M. (2012), "Imaging of mineral- enriched biochar by FTIR, Raman and SEM - EDX", Vib. Spectrosc., 62, 248-257. https://doi.org/10.1016/j.vibspec.2012.06.006
- Chen, C.C., Huang, Y. H. and Chien, H.J. (2021), "Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors", Sustain. Chem. Pharm., 24, 100535. https://doi.org/10.1016/j.scp.2021.100535
- Citak, A. and Yarbas, T. (2022), "Using contact angle measurement technique for determination of the surface free energy of B-SBA-15-x materials", Int. J. Adhes. Adhes., 112, 103024. https://doi.org/10.1016/j.ijadhadh.2021.103024.
- Dahrul, M., Alatas, H. and Irzaman (2016), "Preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB satellite", Procedia Environ. Sci., 33, 661-667. https://doi.org/10.1016/j.proenv.2016.03.121.
- Demirbas, A. (2004), "Combustion characteristics of different biomass fuels", Prog. Energy Combust. Sci., 30(2), 219-230. https://doi.org/10.1016/j.pecs.2003.10.004.
- Dwivedi, C., Manjare, S. and Rajan K Sushil (2020), "Recycling of waste tire by pyrolysis to recover carbon black: an alternative reinforcing filler", Compos. Part B, 200, 108346. https://doi.org/10.1007/s10163-023-01635-6.
- De Falco, G., Mattiello, G., Commodo, M., Minutolo, P., Shi, X., D'Anna, A. and Wang, H., (2021), "Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy", Proc. Combust. Inst., 38(1), 1805-1812. https://doi.org/10.1016/j.proci.2020.07.109.
- Feng, Z., Zhao, P., Li, X. and Zhu, L. (2021), "Preparation and properties of bitumen modified with waste rubber pyrolytic carbon black", Constr. Build.Mater., 282, 122697. https://doi.org/10.1016/j.conbuildmat.2021.122697.
- Feng, Z.G., Rao, W.Y., Chen, C., Tian, B., Li, X.J., Li, P.L. and Guo, Q.L. (2016), "Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres", Constr. Build. Mater., 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143.
- Figueredo, N.A. de, Consta, L.M. da, Melo, L.C.A., Siebeneichlerd, E. and Antonio, Tronto, J. (2017), "Characterization of biochars from different sources and evaluation", Rev. Ciencia Agronomica, 48, 395-403. https://doi.org/10.5935/1806-6690.20170046.
- Fowkes, F.M. (1962), "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces", J. Phys. Chem., 66(2), 382. https://doi.org/https://doi.org/10.1021/j100808a524.
- Fowkes, F.M. (1964), "Attractive forces at interfaces', Ind. Eng. Chem., 56, 40-52. https://doi.org/10.1021/ie50660a008.
- Gao, N., Wang, F., Quan, C., Santamaria, L., Lopez, G. and Williams, P.T. (2022), "Tire pyrolysis char: Processes, properties, upgrading and applications", Prog. Energy Combust. Sci., 93, 101022. https://doi.org/10.1016/j.pecs.2022.101022.
- Gindl, M., Sinn, G., Gindl, W., Reiterer, A. and Tschegg, S. (2001), "A comparison of different methods to calculate the surface free energy of wood using contact angle measurements", Colloids Surf. A, 181, 279-287. https://doi.org/10.1016/S0927-7757(00)00795-0.
- Goh, Y.M., Han, K.D., Tan, L.L. and Chai, S.P. (2014), "Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes", Adv. nano Res., 2(4), 219-225. https://doi.org/10.12989/anr.2014.2.4.219
- Goksal, F.P. (2022), "An economic analysis of scrap tire pyrolysis, potential and new opportunities", Heliyon, 8(11), e11669. https://doi.org/10.1016/j.heliyon 2022.e11669.
- Hu, M., Yao, Z. and Wang, X. (2017), "Characterization techniques for graphene-based materials in catalysis", AIMS Mater. Sci., 4(3), 755-788. https://doi.org/10.3934/matersci.2017.3.755.
- Huang, Z.D., Zhang, B., Liang, R., Zheng, Q. Bin, Oh, S.W., Lin, X.Y., Yousefi, N. and Kim, J.K., (2012), "Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers", Carbon, 50(11), 4239-4251. https://doi.org/10.1016/j.carbon.2012.05.006.
- IMARC (2022), India Tyre market: Industry trends, share, size, Growth, Opportunity and Forecast 2023- 2028, International Market Analysis Research and Consulting, Uttar Pradesh, India.
- Jiang, G., Pan, J., Deng, W., Sun, Yanzhi, Guo, J., Che, K., Yang, Y., Lin, Z., Sun, Yancai, Huang, C. and Zhang, T. (2022), "Recovery of high pure pyrolytic carbon black from waste tires by dual acid treatment", J. Clean. Prod., 374, 133893. https://doi.org/10.1016/j.jclepro.2022.133893.
- Kanagasundaram, K. and Solaiyan, E. (2023), "Smart cement-sensor composite: The evolution of nanomaterial in developing sensor for structural integrity", Struct. Concr., 24(5), 1-41. https://doi.org/10.1002/suco.202201145.
- Khalid, A., Khushnood, R.A. and Ali Memon, S. (2022), "Pyrolysis as an alternate to open burning of crop residue and scrap tires: Greenhouse emissions assessment and mechanical performance investigation in concrete", J. Clean. Prod., 365. https://doi.org/10.1016/j.jclepro.2022.132688.
- Kok, M.V. and O zgur, E. (2013), "Thermal analysis and kinetics of biomass samples", Fuel Proc. Technol., 106, 739-743. https://doi.org/10.1016/j.fuproc.2012.10.010.
- Li, C., Fan, Z., Wu, S., Li, Y., Gan, Y. and Zhang, A. (2018), "Effect of carbon black nanoparticles from the pyrolysis of discarded tires on the performance of asphalt and its mixtures", Appl. Sci., 8(4), 1-16. https://doi.org/10.3390/app8040624.
- Lim, S. and Mondal, P. (2014), "Micro- and nano-scale characterization to study the thermal degradation of cement-based materials", Mater. Charact., 92, 15-25. https://doi.org/10.1016/j.matchar.2014.02.010.
- Long, W.J., Xiao, B.X., Gu, Y.C. and Xing, F. (2018), "Micro- and macro-scale characterization of nano- SiO2 reinforced alkali activated slag composites", Mater. Charact., 136, 111-121. https://doi.org/10.1016/j.matchar.2017.12.013.
- Ma, Y., Zhao. H., Zhang, X., Fan, C., Zhuang, T., Sun, C. and Zhao, S. (2022), "Structure optimization of pyrolysis carbon black from waste tire and its application in natural rubber composites", Appl. Surf. Sci., 593, 153389. https://doi.org/10.1016/j.apsusc.2022.153389
- Mahmood, A., Khushnood, R.A. and Zeeshan, M. (2020), "Pyrolytic carbonaceous reinforcements for enhanced electromagnetic and fracture response of cementitious composites", J. Clean. Prod., 248, 119288. https://doi.org/10.1016/j.jclepro.2019.119288.
- Maroufi, S., Mayyas, M. and Sahajwalla, V. (2017), "Nano-carbons from waste tyre rubber: An insight into structure and morphology", Waste Manag., 69, 110-116. https://doi.org/10.1016/j.wasman.2017.08.020.
- Martinez, J.D., Cardona-Uribe, N., Murillo, R., Garcia, T. and Lopez, J.M., (2019), "Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding", Waste Manag., 85, 574-584. https://doi.org/10.1016/j.wasman.2019.01.016.
- Moasas, A.M., Amin, M.N., Khan, K., Ahmad, W., Al-Hashem, M.N.A., Deifalla, A.F. and Ahmad, A. (2022), "A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review", Case Stud. Constr. Mater., 17, e01677. https://doi.org/10.1016/j.cscm.2022.e01677.
- Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M.T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Maghool, F. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A review", Resour. Conserv. Recycl., 155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679.
- Nogueira, M., Matos, I., Bernardo, M., Pinto, F., Lapa, N., Surra, E. and Fonseca, I. (2019), "Char from spent tire rubber: A potential adsorbent of remazol yellow dye", J. Carbon Res., 5(4), 76. https://doi.org/10.3390/c5040076.
- Owens, D.K. and Wendt, R.C. (1969), "Estimation of the surface free energy of polymers", J. Appl. Polym. Sci., 13, 1741-1747. https://doi.org/https://doi.org/10.1002/app.1969.070130815.
- Papanikolaou, I., Ribeiro de Souza, L., Litina, C. and Al-Tabbaa, A. (2021), "Investigation of the dispersion of multi-layer graphene nanoplatelets in cement composites using different superplasticizer treatments", Constr. Build. Mater., 293, 123543. https://doi.org/10.1016/j.conbuildmat.2021.123543.
- Parthasarathy, P., Choi, H.S., Park, H.C., Hwang, J.G., Yoo, H.S., Lee, B.K. and Upadhyay, M. (2016), "Influence of process conditions on product yield of waste tyre pyrolysis- A review", Korean J. Chem. Eng., 33(8), 2268-2286. https://doi.org/10.1007/s11814-016-0126-2.
- Paul, S., Rahaman, M., Ghosh, S.K., Katheria, A., Das, T.K., Patel, S. and Das, N.C. (2023), "Recycling of waste tire by pyrolysis to recover carbon black: an alternative reinforcing filler", J. Mater. Cycles Waste Manag., 25, 1470-1481. https://doi.org/10.1007/s10163-023-01635-6.
- Rai, R.S. and Bajpai, V. (2023), "One-step microwave synthesis of surface functionalized carbon fiber fabric by ZnO nanostructures", Adv. Nano Res., 14(6), 557-573. https://doi.org/10.12989/anr.2023.14.6.557
- Rbihi, S., Aboulouard, A., Laallam, L. and Jouaiti, A. (2020), "Contact Angle Measurements of Cellulose based Thin Film composites: Wettability, surface free energy and surface hardness", Surf. Interf., 21, 100708. https://doi.org/10.1016/j.surfin.2020.100708.
- Rosa, P. de F., Cirqueira, S.S.R., Aguiar, M.L. and Bernardo, A. (2014), "Solvothermal synthesis and characterization of silver nanoparticles", Adv. Nano Res., 802(3), 135-139. https://doi.org/10.4028/www.scientific.net/MSF.802.135
- Ryms, M., Januszewicz, K., Kazimierski, P., Luczak, J., Klugmann-Radziemska, E. and Lewandowski, W.M. (2020), "Post-pyrolytic carbon as a phase change materials (PCMs) carrier for application in building materials", Materials, 13(6), 1268. https://doi.org/10.3390/ma13061268
- Ryms, M., Januszewicz, K., Haustein, E., Kazimierski, P. and Lewandowski, W.M. (2022), "Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier", Energy, 239, 121936. https://doi.org/10.1016/j.energy.2021.121936.
- Sardar, H., Khushnood, R.A., Khaliq, W., Khan, H.A. and Saleem, M.F. (2022), "Influence of pyrolytic waste tire residue on the residual performance of high strength concrete exposed to elevated temperatures", J. Build. Eng., 54, 104657. https://doi.org/10.1016/j.jobe.2022.104657.
- Shilpa, Kumar, R. and Sharma, A. (2018), "Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery", J. Appl. Electrochem., 48(1), 1-13. https://doi.org/10.1007/s10800-017-1129-3.
- Singh, J., Kumar, M., Sharma, A., Pandey, G., Chae, K. and Lee, S. (2016), Activated Carbons from Waste Tyre Pyrolysis: Application, Intech, London, U.K.
- Tauc, J., Grigorovici, R. and Vancu, A. (1966), "Optical properties and electronic structure of amorphous germanium", Phys. Status Solidi B, 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.
- Tauc, J. and Scott, T.A. (1967), "The optical properties of solids", Phys. Today, 20(10), 105-107. https://doi.org/10.1063/1.3033945.
- Torres, I.Z., Dominguez, A.S., Bueno, J.J.P., Meas, Y., Lopez, M.L.M. and Dector, A. (2021), "Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes", Adv. Nano Res. 10(3), 211-219. https://doi.org/10.12989/anr.2021.10.3.211
- Trubetskaya, A., Kling, J., Ershag, O., Attard, T.M. and Schroder, E. (2019), "Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black", J. Hazard. Mater. 365, 846-56. https://doi.org/10.1016/j.jhazmat.2018.09.061
- Uvarov, V. and Popov, I. (2007), "Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials", Mater. Charact., 58(10), 883-891. https://doi.org/10.1016/j.matchar.2006.09.002.
- Uvarov, V. and Popov, I. (2013), "Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials", Mater. Charact., 85, 111-123. https://doi.org/10.1016/j.matchar.2013.09.002.
- Wang, H., Lu, G., Feng, S., Wen, X. and Yang, J. (2019), "Characterization of bitumen modified with pyrolytic carbon black from scrap tires", Sustain., 11(6), 1-13. https://doi.org/10.3390/su11061631.
- Wang, M., Zhang, L., Li, A., Irfan, M., Du, Y. and Di, W. (2019) 'Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars', J. Environ. Manage., 232, 364-371. https://doi.org/10.1016/j.jenvman.2018.10.091.
- Wang, Z., Wu, M., Chen, G., Zhang, M., Sun, T., Burra, K.G., Guo, S., Chen, Y., Yang, S., Li, Z., Lei, T. and Gupta, A.K. (2023), "Co-pyrolysis characteristics of waste tire and maize stalk using TGA, FTIR and Py-GC/MS analysis", Fuel, 337, 127206. https://doi.org/10.1016/j.fuel.2022.127206.
- Wu, I.F. and Liao, Y.C. (2021), "A chemical milling process to produce water-based inkjet printing ink from waste tire carbon blacks", Waste Manag., 122, 64-70. https://doi.org/10.1016/j.wasman.2020.12.041
- Zhao, J., Huang, G., Guo, Y., Gupta, R., Liu, W.V. (2023), "Developing thermal insulation cement-based mortars using recycled carbon black derived from scrapped off-the-road tires", Constr. Build. Mater., 393, 132043. https://doi.org/10.1016/j.conbuildmat.2023.132043