References
- Abdelaziz, T. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano. Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581
- Aissa, K., Rabbab, B.B., Attia, B., Mohamed, S., Samir, B., Mahmoud, M.S.S., Tounsi, A. and Muzamal, H. (2022), "Study on the Mechanical Instability of Bidirectional Imperfect FG Sandwich Plates Subjected to In-Plane Loading", Arab. J. Sci. Eng., 47, 13655-13672. https://doi.org/10.1007/s13369-022-07203-8
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Ahmed-Amine, D., Mohamed-Ouejdi, B., Drai, A., Mohamed, S. A.H., Mehmet, A., Tounsi, A., Mohamed, A.E. (2022), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Acta Mech., 2022. https://doi.org/10.1007/s00707-022-03405-1
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2017), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40, 392. https://doi.org/10.1007/s40430-018-1315-1.
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011) "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
- Bui, V.T. (2022), "Free vibration behaviors of nanoplates resting on viscoelastic medium", Ara. J. Scie. Eng., 2022. https://doi.org/10.1007/s13369-022-07500-2
- Bui, V.T. and Gia, T.L. (2023), "Static Buckling Analysis of FG Sandwich Nanobeams", J. Vib. Eng. Technol., 2023. https://doi.org/10.1007/s42417-023-01081-6
- Cuong-Le, T., Khuong, D.N., Jaehong, L., Timon, R. and Hung, N.X. (2021), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanot., 33, 065703. https://doi.org/10.1088/1361-6528/ac32f9
- Demir, C. and Oz, F.E. (2014), "Free vibration analysis of a functionally graded viscoelastic supported beam", J. Vib. Control, 20(16), 2464-2486. https://doi.org/10.1177/1077546313479634.
- Deng, Q., Kammoun, M., Erturk, A. and Sharma, P. (2014), "Nanoscale flexoelectric energy harvesting", Int. J. Solids Struct., 51(18), 3218-3225. https://doi.org/10.1016/j.ijsolstr.2014.05.018.
- Doan, H.D, Do, V.T., Pham, H.C., Phung, V.M., Nguyen, X.N. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Bas. Des. Struct. Mach., 2022, 1-19. https://doi.org/10.1080/15397734.2022.2088558.
- Duc, H.D., Ashraf, M.Z. and Do, V.T. (2022), "Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects", The Euro. Phys. J. Plus., 137, 447. https://doi.org/10.1140/epjp/s13360-022-02631-9
- Duc, H. D., Thom, V. D., Phuc, M. P. and Nguyen, D. D. (2018a), "Validation simulation for free vibration and buckling of cracked Mindlin plates using phase-field method", Mech. Adv. Mat. Struct., 26(12), 1018-1027. https://doi.org/10.1080/15376494.2018.1430262
- Duc, N. D., Trinh, T. D., Do, T. V. and Doan, D. H. (2018b), "On the buckling behavior of multi-cracked FGM plates", Proc. Int. Conf. Adv. Comp. Mech., 29-45. https://doi.org/10.1007/978-981-10-7149-2_3
- Ebrahimi, F., Karimiasl, M., Civalek, O., Vinyas, M. (2019a), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano. Res., 7(2), 77-88. https://doi.org/10.12989/anr.2019.7.2.077
- Ebrahimi, F., Barati, M.R. (2019b), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano. Res., 63-75. https://doi.org/10.12989/anr.2019.7.1.063
- Ebrahimi, F., Barati, M.R., Mahesh, V. (2019c), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano. Res., 7(3), 145-155. https://doi.org/10.12989/anr.2019.7.3.145
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019d), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
- Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I. and Bachtold, A. (2011), "Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene", Nat. Nanotechnol., 6(6), 339-342. https://doi.org/10.1038/nnano.2011.71.
- Foroutan, K. and Dai, L. (2022), "Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core", Steel Compose. Struct., 43(3), 349-367. https://doi.org/10.12989/scs.2022.45.3.349.
- Ghobadi, A., Golestanian, H., Beni, Y.T. and Zur, K.K. (2021), "On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate", Commun. Nonlinear Sci. Numer. Simul., 95, 105585. https://doi.org/10.1016/j.cnsns.2020.105585.
- Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008.
- Hoang-Nam, N., Tran, C.T., Doan, T.L., Van-Duc, P., Do, V.T. and Phung, V.M. (2019a), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Materials, 12(8), 1262. https://doi.org/10.3390/ma12081262.
- Hoang-Nam, N., Tan-Y, N., Ke, V.T., Thanh, T.T., Truong-Thinh, N., Van-Duc, P. and Thom, V.D. (2019b), "A finite element model for dynamic analysis of triple-layer composite plates with layers connected by shear connectors subjected to moving load", Materials, 12(4), 598. https://doi.org/10.3390/ma12040598
- Hieu, N.T., Do, V.T., Thai, N.D., Long, T.D. and Minh, P.V. (2020), "Enhancing the quality of the characteristic transmittance curve in the infrared region of range 2.5-7 ㎛ of the optical magnesium fluoride (MgF2) ceramic using the hot-pressing technique in a vacuum environment", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/7258431.
- Jinxuan, Z., Zohre, M., Maryam, S. and Mohamed, A. K. (2022), "Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam", Comput. Concr., 30(2), 85-97. https://doi.org/10.12989/cac.2022.30.2.085
- Jing-Lei, Z., Wu, F., Ru-Qing, B. and Wang, S. (2022), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465
- Karlicic, D., Kozic, P. and Pavlovic, R. (2014), "Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium", Compos. Struct., 115 (1), 89-99. https://doi.org/10.1016/j.compstruct.2014.04.002.
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam," Smart Mater. Struct., 23 (3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020.
- Liang, X., Hu, S. and Shen, S. (2015), "Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity", Smart Mater. Struct., 24(10), 105012. https://doi.org/10.1088/0964-1726/24/10/105012.
- Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys. D. Appl. Phys., 49(11), 115307. https://doi.org/10.1088/0022-3727/49/11/115307.
- Li, A., Zhou, S. and Qi, L. (2016), "Size-dependent electro-mechanical coupling behaviors of circular micro-plate due to flexoelectricity", Appl. Phys. A Mater. Sci. Proc., 122, 918. https://doi.org/10.1007/s00339-016-0455-3.
- Lieu, P.V. and Gia, T.L. (2023), "Static bending, free and forced vibration responses of organic nanobeams in a temperature environment", Arch. Appl. Mech., 2023. https://doi.org/10.1007/s00419-023-02469-2
- Luat, D.T, Do, V.T., Thanh, T.T., Minh, P.V, Ke, T.V, and Vinh, P.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano. Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055
- Mahmoud, S.R., Ghandourah, E., Ali, A., Mohammed, B., Tounsi, A. and Fouad, B. (2022), "On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model", Arch. Civil Mech. Eng., 22, 186. https://doi.org/10.1007/s43452-022-00506-5
- Majdoub, M.S., Sharma, P. and Cagin, T. (2008), "Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect", Phys. Rev. B, 77, 119904. https://doi.org/10.1103/PhysRevB.77.125424.
- Minh, T.T. and Thanh, C.L. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930
- Mohammadi, P., Liu, L.P. and Sharma, P. (2014), "A theory of flexoelectric membranes and effective properties of heterogeneous membranes", J. Appl. Mech. Trans. ASME, 81(1), 011007. https://doi.org/10.1115/1.4023978.
- Nam, V.H, Pham, V.V., Nguyen, V.C., Do, V.T. and Tran, T.H. (2019), "A new beam model for simulation of the mechanical behaviour of variable thickness functionally graded material beams based on modified first order shear deformation theory", Materials, 12(3), 404. https://doi.org/10.3390/ma12030404
- Nguyen, C.T., Nguyen, T.T. and Do, V.T. (2019), "New numerical results from simulations of beams and space frame systems with a tuned mass damper", Materials, 12(8), 1329. https://doi.org/10.3390/ma12081329
- Pham, T.D., Doan, T.L. and Do, V.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Viet. J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730
- Pham, H.C., Doan, H.D. and Do, V.T. (2022), "Phase field model for fracture based on modified couple stress", Eng. Fract. Mech., 269, 108534. https://doi.org/10.1016/j.engfracmech.2022.108534
- Phung, M.V, Nguyen, D.T., Doan, L.T., Nguyen, D.V. and Duong, T.V. (2022), "Numerical investigation on static bending and free vibration responses of two-layer variable thickness plates with shear connectors", Iran. J. Sci. Technol. Trans. Mech. Eng., 46, 1047-1065. https://doi.org/10.1007/s40997-021-00459-9.
- Phung, V.M., Le, M.T., Doan, T.L. and Nguyen, D.A.V. (2022), "Static bending analysis of nanoplates on discontinuous elastic foundation with flexoelectric effect". J. Scie. Technol., 17(5). https://doi.org/10.56651/lqdtu.jst.v17.n05.529
- Pouresmaeeli, S., Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium", Compos. Struct., 96, 405-410. https://doi.org/10.1016/j.compstruct.2012.08.051.
- Qi, L., Zhou, S. and Li, A. (2016), "Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect", Compos. Struct., 135, 167-175. https://doi.org/10.1016/j.compstruct.2015.09.020.
- Qi, L., Huang, S., Fu, G., Zhou, S. and Jiang, X. (2018), "On the mechanics of curved flexoelectric microbeams", Int. J. Eng. Sci., 124, 1-15. https://doi.org/10.1016/j.ijengsci.2017.11.022.
- Quang, D.V., Doan T.N., Luat, D.T. and Thom, D.V. (2022), "Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory", Struct., 44, 828-850. https://doi.org/10.1016/j.istruc.2022.08.039
- Reissner, E. (1985), "Reflections on the theory of elastic plates", Appl. Mech. Rev., 38(11) 1453-1464. https://doi.org/10.1115/1.3143699
- Rupa N.S. and Ray, M.C. (2017), "Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity", Int. J. Mech. Mater. Des., 13(3), 453-467. https://doi.org/10.1007/s10999-016-9347-0.
- Shen, S. and Hu, S. (2010) , "A theory of flexoelectricity with surface effect for elastic dielectrics", J. Mech. Phys. Solids, 58(5), 665-677. https://doi.org/10.1016/j.jmps.2010.03.001.
- Singh, P.P., Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano. Res., 10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025
- Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S. and Wang, Y. (2019), "Flexoelectric materials and their related applications: A focused review", J. Adv. Ceram., 8(2), 153-173. https://doi.org/10.1007/s40145-018-0311-3.
- Shu, L., Wei, X., Pang, T., Yao, X. and Wang, C. (2011) , "Symmetry of flexoelectric coefficients in crystalline medium", J. Appl. Phys., 110, 104106. https://doi.org/10.1063/1.3662196.
- Su, Y., Hao,W., Rungang, G., Zhi, Y., Jing, Z., Zhaohui, Z. and Yafei, Z. (2012), "Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper", Carbon, 50(8), 2804-2809. https://doi.org/10.1016/j.carbon.2012.02.045.
- Srivastava, I., Z. Yu, Z. and Koratkar, N. (2012), "Viscoelastic Properties of Graphene-Polymer Composites," Adv. Sci. Eng. Med., 4 (1), 10-14. https://doi.org/10.1166/asem.2012.1127.
- Tinh, Q.B., Duc, H.D., Thom, V.D., Sohichi, H. and Nguyen, D.D. (2016), "High frequency modes meshfree analysis of Reissner-Mindlin plates", J. Sci. Adv. Mat. Develop., 1(3), 400-412. https://doi.org/10.1016/j.jsamd.2016.08.005
- Tien, D.M, Thom, D.V, Minh, P.V., Tho, N.C., Doan, T.N. and Mai, D.N. (2023), "The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates", Mech. Based Des. Struct., 2023. https://doi.org/10.1080/15397734.2023.2186893
- Thai, L.M., Luat, D.T., Phung, V.B., Minh, P.V. and Thom, D.V. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Arch. Appl. Mech., 92(1), 163-182. https://doi.org/10.1007/s00419-021-02048-3.
- Thanh, C. L., Khuong, D. N., Minh, H. L., Thanh, S. T., Phan-Vu, P. and Magd, A. W. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Phys. B Cond. Mat., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726
- Tho, N.C., Thom, D. Van, Cong, P.H., Zenkour, M.A., Doan, D.H. and Minh, P.V. (2023), "Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer", Compos. Struct., 305, 116529. https://doi.org/10.1016/j.compstruct.2022.116529
- Thom, V.D., Duc, H.D., Nguyen, D.D. and Tinh, Q.B. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. https://doi.org/10.1016/j.compstruct.2017.09.059
- Thom, V.D., Duc, H.D., Nguyen, C.T. and Nguyen, D.D. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(8), 2250089. https://doi.org/10.1142/S0219455422500894.
- Tho, N.C., Thanh, N.T., Tho, T.D., Minh, P.V. and Hoa, L.K. (2021), "Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection", J. Brazil. Soc. Mech. Sci. Eng., 43(11), 510. https://doi.org/10.1007/s40430-021-03189-w.
- Thom, D.V., Duc, D.H., Minh, P.V. and Tung, N.S. (2020), "Finite Element Modelling for Free Vibration Response of Cracked Stiffened Fgm Plates", Vietnam J. Sci. Technol., 58(1), 119. https://doi.org/10.15625/2525-2518/58/1/14278.
- Tuan, L.T., Dung, N. T., Thom, D. V., Minh, P. V. and Zenkour, A. (2021), "Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium", Eur. Phys. J. Plus, 136, 1199. https://doi.org/10.1140/epjp/s13360-021-02191-4.
- Tuyen, B.V. (2023), "Vibration response of bamboo-reinforced composite beams", J. Vib. Eng. Technol., 2023. https://doi.org/10.1007/s42417-023-00998-2
- Tran, N.D., Thom, D.V., Thanh, N.T., Chuong, P.V., Tho, N.C., Ta, N.T. and Nam, N.H. (2020), "Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear deformation Quasi-3D theory", Compos. Struct., 232, 111526. https://doi.org/10.1016/j.compstruct.2019.111526.
- Xiao, Z., Pinyi, W., Al-Dhaifallah, M., Muhyaddin, R. and Mohamed, A.K. (2022), "A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet", Adv. Nano. Res., 12(1), 81-99. https://doi.org/10.12989/anr.2022.12.1.081
- Xiang, S. and Li, X.F. (2018), "Elasticity solution of the bending of beams with the flexoelectric and piezoelectric effects", Smart Mater. Struct., 27(10), 105023. https://doi.org/10.1088/1361-665X/aadd5b.
- Xiang, S., Lee, K.Y. and Li, X.F. (2020), "Elasticity solution of functionally graded beams with consideration of the flexoelectric effect", J. Phys. D. Appl. Phys., 53(10), 105301. https://doi.org/10.1088/1361-6463/ab5cc1.
- Yan, Z. and Jiang, L.Y. (2013a), "Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams", J. Appl. Phys., 113(19), 194102. https://doi.org/10.1063/1.4804949.
- Yan, Z. and Jiang, L. (2013b), "Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity", J. Phys. D. Appl. Phys., 46(35), 355502. https://doi.org/10.1088/0022-3727/46/35/355502.
- Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mech., 226(9), 3097-3110. https://doi.org/10.1007/s00707-015-1373-8.
- Yue, Y.M., Xu, K.Y. and Chen, T. (2016), "A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects", Compos. Struct., 136, 278-286. https://doi.org/10.1016/j.compstruct.2015.09.046.
- Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Physica. E, 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003.
- Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. Appl. Phys., 116, 014307. https://doi.org/10.1063/1.4886315.
- Zhang, Z. and, Jin, C. (2022), "Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation", Steel Compos. Struct., 43(5), 581-601. https://doi.org/10.12989/scs.2022.43.5.581
- Zhou, L. (2022), "Computerized responses of spinning NEMS via numerical and mathematical modeling", Struct. Eng. Mech., 82(5), 629-641. https://doi.org/10.12989/sem.2022.82.5.629.
- Zhonghong, L. and Gongxing, Y. (2022), "Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks", Compit. Concr., 29(6), 419-432. https://doi.org/10.12989/cac.2022.29.6.419
- Zubko, P., Catalan, G. and Tagantsev, A.K. (2013) "Flexoelectric effect in solids", Annual Rev. Mater. Res., 43, 387-421. https://doi.org/10.1146/annurev-matsci-071312-121634.
- Wang, Y., Li, F.M. and Wang, Y.Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physiaca E, 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007.
- Wang, X., Zhang, R. and Jiang, L. (2017), "A study of the flexoelectric effect on the electroelastic fields of a cantilevered piezoelectric nanoplate", Int. J. Appl. Mech., 9(4), 1750056. https://doi.org/10.1142/S1758825117500569.
- Wang, K.F. and Wang, B.L. (2018), "Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect", Energy, 149, 597-606. https://doi.org/10.1016/j.energy.2018.02.069.
- Wenjuan Y. (2022), "Intelligent computer modelling and simulation for the large amplitude of nano systems", Adv. Nano Res., 13(1), 63-75. https://doi.org/10.12989/anr.2022.13.1.063
- Zhe, Z., Qijian, Y. and Cong, J. (2022), "Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation", Steel Compos. Struct., 43(5), 581-601. https://doi.org/10.12989/scs.2022.43.5.581
- Smain, B., Aicha, B., Mohammed, S. A. H. and Marc, A. (2022), "A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates", Steel Compos. Struct., 45(6), 839-850. https://doi.org/10.12989/scs.2022.45.6.839
- Lingao, Z. (2022), "Computerized responses of spinning NEMS via numerical and mathematical modeling", Struct. Eng. Mech., 82(5), 629-641. https://doi.org/10.12989/sem.2022.82.5.629
- Zhonghong, L. and Gongxing, Y. (2022), "Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks", Comput. Concr., 29(6), 419-432. https://doi.org/10.12989/cac.2022.29.6.419
- Jinxuan, Z., Zohre, M., Maryam, S. and Mohamed, A.K. (2022), "Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam", Comput. Concr., 30(2), 85-97. https://doi.org/10.12989/cac.2022.30.2.085
- Xiao, Z., Pinyi, W., Al-Dhaifallah, M., Muhyaddin, R. and Mohamed, A.K. (2022), "A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet", Adv. Nano. Res., 12(1), 81-99. https://doi.org/10.12989/anr.2022.12.1.081
- Jing-Lei, Z., Gui-Lin, S., Fei, W., Shu-Jin, Y., Ru-Qing, B., Hua-Yan, P., Shilong, W., Jun, L. (2022), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465