참고문헌
- Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811
- Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496
- Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2022a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38(Suppl 5), 3725-3741. https://doi.org/10.1007/s00366-020-01200-x
- Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2022b), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 38(2), 1679-1696. https://doi.org/10.1007/s00366-020-01130-8
- Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499
- Ansari, R., Hassani, R., Gholami, R. and Rouhi, H. (2021), "Buckling and postbuckling of plates made of FG-GPL-reinforced porous nanocomposite with various shapes and boundary conditions", Int. J. Struct. Stabil. Dyn., 21(5), 2150063. https://doi.org/10.1142/S0219455421500632
- Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y
- Artioli, E. and Viola, E. (2006), "Free vibration analysis of spherical caps using a GDQ numerical solution", J. Press. Vessel Technol., 128(3), 370-378. https://doi.org/10.1115/1.2217970
- Asadzadeh, Z. and Eslami, M.R. (2018), "Nonlinear axisymmetric, thermally induced vibrations of a functionally graded spherical cap", J. Mech. Eng. Transact. ISME, 20(3), 133-169.
- Babaei, M., Kiarasi, F., Hossaeini Marashi, S.M., Ebadati, M., Masoumi, F. and Asemi, K. (2021), "Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical-cylindrical-conical shell", Waves Random Complex Media, 1-33. https://doi.org/10.1080/17455030.2021.2003478
- Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-Nejad-Parizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7), 1950068. https://doi.org/10.1142/S1758825119500686
- Barzegar, A.R. and Fadaee, M. (2018), "Thermal vibration analysis of functionally graded shallow spherical caps by introducing a decoupling analytical approach", Appl. Math. Modell., 58, 473-486. https://doi.org/10.1016/j.apm.2018.02.018
- Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concr., 26(5), 439-450. http://doi.org/10.12989/cac.2020.26.5.439
- Bellifa, H., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K. H. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719
- Bouafia, H., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. http://doi.org/10.12989/anr.2021.11.3.239
- Bot, I.K., Bousahla, A.A., Zemri, A., Sekkal, M., Kaci, A., Bourada, F. and Mahmoud, S.R. (2022), "Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment", Steel Compos. Struct., 43(6), 821-837. https://doi.org/10.12989/scs.2022.43.6.821
- Cuong-Le, T., Nguyen, K. D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441. https://doi.org/10.12989/anr.2022.12.5.441
- Du, Y., Huo, R., Pang, F., Li, S., Huang, Y. and Zhang, H (2019), "Free vibration of spherical cap subjected to various boundary conditions", Adv. Mech. Eng., 11(9), 1687814019879261. https://doi.org/10.1177/1687814019879261
- Du, Y., Sun, L., Miao, X., Pang, F., Li, H. and Wang, S. (2019), "A unified formulation for free vibration of spherical cap based on the Ritz method", Shock Vib., 18. https://doi.org/10.1155/2019/7470460
- Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099
- Faghidian, S.A. and Tounsi, A. (2022), "Dynamic characteristics of mixture unified gradient elastic nanobeams", Facta Universitatis, Series Mech. Eng., 20(3), 539-552. https://doi.org/10.22190/FUME220703035F
- Flis, J. and Muc, A. (2021), "Influence of coupling effects on analytical solutions of functionally graded (FG) spherical shells of revolution", Rev. Adv. Mater. Sci., 60(1), 761-770. https://doi.org/10.1515/rams-2021-0064
- Gao, C., Pang, F., Li, H. and Li, L. (2020), "An approximate solution for vibrations of uniform and stepped functionally graded spherical cap based on Ritz method", Compos. Struct., 233, 111640. https://doi.org/10.1016/j.compstruct.2019.111640
- Gautham, B.P. and Ganesan, N. (1992), "Free vibration analysis of thick spherical shells", Comput. Struct., 45(2), 307-313. https://doi.org/10.1016/0045-7949(92)90414-U
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1. https://doi.org/10.12989/scs.2021.38.1.001
- Hadji, M., Bouhadra, A., Mamen, B., Menasria, A., Bousahla, A.A., Bourada, F., Bourada, M., Benrahou, K.H., Tounsi, A. (2023), "Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures", Steel Compos. Struct., 46(1), 1-13. https://doi.org/10.12989/scs.2023.46.1.001
- Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. http://doi.org/10.12989/scs.2021.38.5.533
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7
- Katiyar, V., Gupta, A. and Tounsi, A. (2022), "Microstructural/ geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM", Steel Compos. Struct., 45(5), 621-640. https://doi.org/10.12989/scs.2022.45.5.621
- Khinchi, A. and Sharma, P, (2020), "Free vibration analysis of isotropic spherical cap and FG-spherical cap with cut-out using COMSOL", AIP Conference Proceedings, 2220(1), 130074. https://doi.org/10.1063/5.0001299
- Khinchi, A. and Sharma, P. (2019), "Review on vibration analysis of functionally graded material (FGM) spherical shell", 14th ICRTESM, 96-101.
- Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361
- Kitipornchai, S., Chen, D., and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
- Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H. and Tounsi, A. (2022), "On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions", Thin Wall. Struct., 179, 109631. https://doi.org/10.1016/j.tws.2022.109631
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1. http://doi.org/10.12989/anr.2021.11.1.001
- Li, H., Pang, F., Ren, Y., Miao, X. and Ye, K. (2019), "Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory", Thin Wall. Struct., 144, 106331. https://doi.org/10.1016/j.tws.2019.106331
- Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A Solids, 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649
- Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: Analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157
- Mangalasseri, A.S., Mahesh, V., Mukunda, S., Mahesh, V., Ponnusami, S.A., Harursampath, D., Tounsi, A. (2023), "Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes", Adv. Nano Res., 14(1), 27-43. https://doi.org/10.12989/anr.2023.14.1.027
- Minh, T.Q., Dong, D.T., Duc, V.M., Tien, N.V., Phuong, N.T. and Nam, V.H. (2022), "Nonlinear axisymmetric vibration of sandwich FGM shallow spherical caps with lightweight porous core", In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure, Springer, Singapore, 203, 381-389. https://doi.org/10.1007/978-981-16-7160-9_38
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.S. (2021), "Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments", Mech. Based Des. Struct., 50(6), 1-15. https://doi.org/10.1080/15397734.2020.1771729
- Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments", Aerosp. Sci. Technol., 110, 106476. https://doi.org/10.1016/j.ast.2020.106476
- Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow", Alexandria Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042
- Nguyen, Q.H., Nguyen, L.B., Nguyen, H.B. and Nguyen-Xuan, H. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets", Compos. Struct., 245, 112321. https://doi.org/10.1016/j.compstruct.2020.112321
- Pang, F., Gao, C., Cui, J., Ren, Y., Li, H. and Wang, H. (2019), "A semianalytical approach for free vibration characteristics of functionally graded spherical shell based on first-order shear deformation theory", Shock Vib., 2019, 18. https://doi.org/10.1155/2019/7352901
- Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041
- Prakash, T., Singh, M.K. and Ganapathi, M. (2006), "Vibrations and thermal stability of functionally graded spherical caps", Struct. Eng. Mech., 24(4), 447-461. https://doi.org/10.12989/sem.2006.24.4.447
- Punera, D. and Kant, T. (2019), "A critical review of stress and vibration analyses of functionally graded shell structures", Compos. Struct., 210, 787-809. https://doi.org/10.1016/j.compstruct.2018.11.084
- Ram, K.S. and Babu, T.S. (2002), "Free vibration of composite spherical shell cap with and without a cutout", Comput. Struct., 80(23), 1749-1756. https://doi.org/10.1016/S0045-949(02)00210-9
- Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A. and Structures, C. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695
- Sadd, M.H. (2009). Elasticity: theory, applications, and numerics. Academic Press.
- Safarpour, M., Rahimi, A. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct., 48(4) 496-524. https://doi.org/10.1016/j.compstruct.2018.03.090
- Salehi, M., Gholami, R. and Ansari, R. (2021), "Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells", Mech. Based Des. Struct., 1-23. https://doi.org/10.1080/15397734.2021.1891096
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179
- Su, Z., Jin, G., Shi, S. and Ye, T. (2014), "A unified accurate solution for vibration analysis of arbitrary functionally graded spherical shell segments with general end restraints", Compos. Struct., 111, 271-284. https://doi.org/10.1016/j.compstruct.2014.01.006
- Susmith, A.V. and Ram, K.S. (2019), "Free vibration of functionally graded carbon nanotube reinforced composite spherical shell cap", AIP Conf Proc., 2200(1), 020040. https://doi.org/10.1063/1.5141210
- Tao, C. and Dai, T. (2021), "Isogeometric analysis for postbuckling of sandwich cylindrical shell panels with graphene platelet reinforced functionally graded porous core", Compos. Struct., 260, 113258. https://doi.org/10.1016/j.compstruct.2020.113258
- Thi Phuong, N., Hoai Nam, V. and Thuy Dong, D. (2020), "Nonlinear vibration of functionally graded sandwich shallow spherical caps resting on elastic foundations by using first-order shear deformation theory in thermal environment", J. Sandw. Struct. Mater., 22(4), 1157-1183. https://doi.org/10.1177/109963621878264
- Ton-That, H.L., Nguyen-Van, H. and Chau-Dinh, T. (2021), "A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets", Arch. Appl. Mech., 91(6), 2435-2466. https://doi.org/10.1007/s00419-021-01893-6
- Van Vinh, P. and Tounsi, A. (2022a), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(Suppl 5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8
- Van Vinh, P. and Tounsi, A. (2022b), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084
- Van Vinh, P., Van Chinh, N. and Tounsi, A. (2022), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Eur. J. Mech A Solids, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022
- Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets", Composite Structures., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlinear Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7
- Ye, T., Jin, G. and Su, Z. (2014), "Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions", Compos. Struct., 116, 571-588. https://doi.org/10.1016/j.compstruct.2014.05.046
- Zannon, M., Abu-Rqayiq, A. and Al-bdour, A. (2020), "Free vibration frequency of thick FGM spherical shells based on a third-order shear deformation theory", Eur. J. Pure Appl. Math., 13(4), 766-778. https://doi.org/10.29020/nybg.ejpam.v13i4.3826
- Zhou, X., Wang, Y. and Zhang, W. (2021), "Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow", Acta Astronautica., 183, 89-100. https://doi.org/10.1016/j.actaastro.2021.03.003
- Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012