DOI QR코드

DOI QR Code

A highly effective route for removal of Hg2+ from the waste water using 3-nitrobenzelidenemalononitrile as a modifier of Fe3O4@SiO2 nanoparticles

  • Mosleh Mehryar (Department of Applied Chemistry, Faculty of Chemistry, Urmia University) ;
  • Ghasem Marandi (Department of Organic Chemistry, Faculty of Chemistry, Urmia University)
  • Received : 2022.07.02
  • Accepted : 2023.11.21
  • Published : 2024.01.25

Abstract

SiO2-coated magnetic nanoparticles (Fe3O4@SiO2 NPs) were modified by 3-nitrobenzelidenmalononitrile and used as green linkages for removal of Hg2+ form the wastewater. In this research, it has been attempted to refer to the harmful effects of mercury ions for living things and how to remove such ions using very easy and practical technique. This study shows that by optimizing the test conditions, the efficiency of the removal of harmful ions such as mercury from the water contaminated with these ions can be increased. Conditions such as temperature, speed of agitation, pH of solution were tested for removal of mercury ions. The advantages of this method over other methods listed in the article are the rapid and easy nanocry synthesis. The generated and modified Fe3O4@SiO2 nanoparticles were characterized by X-ray diffraction, fourier transform infrared and scanning electron microscopy spectroscopy. The results show that the synthesized magnetic nanoparticles have the excellent performance for the removal of mercury(II) ion from the waste water.

Keywords

Acknowledgement

The authors would like to thank the Urmia University research council for partial financial support of this work.

References

  1. Ahmad, I. Siddiqui, W.A. Qadir, S. and Ahmad, T. (2018), "Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water", J. Mater. Res. Technol., 7, 270-282. https://doi.org/10.1016/j.jmrt.2017.04.010.
  2. Ahmad, I. Siddiqui, W.A. Ahmad, T. and Siddiqui, V.U. (2019), "Synthesis and characterization of molecularly imprinted ferrite (SiO2@Fe2O3) nanomaterials for the removal of nickel (Ni2+ ions) from aqueous solution", J. Mater. Res. Technol., 8, 1400-1411. https://doi.org/10.1016/j.jmrt.2018.09.011.
  3. Ahmad, I. Siddiqui, W.A. and Ahmad, T. (2019), "Synthesis and characterization of molecularly imprinted magnetite nanomaterials as a novel adsorbent for the removal of heavy metals from aqueous solution", J. Mater. Res. Technol., 8, 4239-4252. https://doi.org/10.1016/j.jmrt.2019.07.034.
  4. Baby, R. Saifullah, B. and Husseian, M.Z. (2019), "Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation", Nanoscale Res. Lett., 14, 341-357. https://doi.org/10.1186/s11671-019-3167-8.
  5. Bresciani, G. Biancalana, L. Pampaloni, G. Zacchini, S. Ciancaleoni, G. and Marchetti, F. (2021), "A comprehensive analysis of the metal-nitrile bonding in an organo-diiron system", Molecules, 26, 7088-7114. https://doi.org/10.3390/molecules26237088.
  6. Carvalho, H.L. Amorim, A.L. Araujo, I.F. Marino, B.L.B. Jimenez, D.E.Q. Ferreira, R.M.A. Hage-Melim, L.I.P. Souto, R.N.S. Porto, A.L.M. and Ferreira, I.M. (2018), "A Simple and efficient protocol for the Knoevenagel reaction of benzylidenemalononitriles and the evaluation of the larvicidal activity on Aedes Aegypti", 10, 362-374. https://doi.org/10.21577/1984-6835.20180028.
  7. Farooq, U. Chaudhary, P. Ingole, P.P. Kalam, A. and Ahmad, T. (2020), "Development of cuboidal KNbO3@α-Fe2O3 hybrid nanostructures for improved photocatalytic and photoelectron-catalytic applications", ACS Omega, 5, 20491-2050. https://doi.org/10.1021/acsomega.0c02646.
  8. Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions from wastewaters: a review", J. Environ. Manage., 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
  9. Gemeay, A.H. Keshta, B.E. El-Sharkawy, R.G. and Zaki, A.B. (2020), "Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters", Environ. Sci. Pollut. Res., 27, 32341-32358. https://doi.org/10.1007/s11356-019-06530-y.
  10. Girgis, E. Adel. D. Tharwat, C. Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano. Res., 3(2), 111-121. http://doi.org/10.12989/anr.2015.3.2.111.
  11. Hu, B. Hu, L.L. Chen, M.L. and Wang, J.H. (2013), "A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells", Biosens. Bioelectron., 49, 499-505. https://doi.org/10.1016/j.bios.2013.06.004.
  12. Jadhav, A.L. and Yadav, G.D. (2019), "Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect ofcombustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts", J. Chem. Sci., 131, 79-93. https://doi.org/10.1007/s12039-019-1641-6.
  13. Jasrotia, R. Suman, Verma, A. Verma, R. Ahmed, J. Godara, S.K. Mehtab, A. Ahmad, T. and Kalia, S. (2022), "Photocatalytic dye degradation efficiency and reusability of Cu-substituted Zn-Mg spinel nanoferrites for wastewater remediation", J. Water Proc. Eng., 48, 102865. https://doi.org/10.1016/j.jwpe.2022.102865.
  14. Lee, E.M. Gwon, S.Y. Kim, S.H. (2014), "Spectral properties of highly selective chemosensor for Hg2+", Spectrochim. Acta A Mol. Biomol. Spectrosc., 120, 646-649. http://doi.org/10.1016/j.saa.2013.10.061.
  15. Leeuwen, F.X.R. and Krzyzanowski M. (2000), World Health Organization. Regional Office for Europe, Air quality guidelines for Europe, WHO, Copenhagen, Netherlands.
  16. Leopold, K. Harwardt, L. Schuster, and M. Schlemmer, (2008), "A new fully automated on-line digestion system for ultra trace analysis of mercury in natural waters by means of FI-CV-AFS", Talanta, 76, 382-388. https://doi.org/10.1016/j.talanta.2008.03.010.
  17. Machala, J. Zboril, R. and Gedanken, A. (2007), "Amorphous iron(III) oxides: A review", J. Phys. Chem. B, 111, 4003-4018. https://doi.org/10.1021/jp064992s.
  18. Manna, U. Broderick, A.H. Lynn, and D.M. (2012), "Chemical patterning and physical refinement of reactive super-hydrophobic surfaces", Adv. Mater. 24, 4291-4295. https://doi.org/10.1002/adma.201200903.
  19. Marandi, G. Maghsoodlou, M.T. Hazeri, N. Habibi-Khorassani, S.M. Akbarzadeh-Torbati, N. Rostami-Cherati, F. Skelton, B.W. and Makha, M. (2011), "Synthesis of cyano-2,3-dihydropyrrolo[1,2-f]phenanthridine derivatives via a domino-Knoevenagel-cyclization", Mol. Divers., 15, 197-201. https://doi.org/10.1007/s11030-010-9254-5.
  20. Mitra, S. Chakraborty, A.J. Tareq, A.M. Bin Emran, T. Nainu, F. Khusro, A. Idris, A.M. Khandaker, M.U. Osman, H. Alhumaydhi, F.A. and Simal-Gandara, J. (2022), "Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity", J. King Saud Univ. Sci., 34, 101865. https://doi.org/10.1016/j.jksus.2022.101865.
  21. Mobinikhaledi, A. Moghanian, H. Hosseini-Gazvini, S.M.B. and Dalvand, A. (2018), "Copper containing poly(melamine-terephthaldehyde)-magnetite mesoporous nanoparticles: a highly active and recyclable catalyst for the synthesis of benzimidazole derivatives", J. Porous Mater., 25, 1123-1134. https://doi.org/10.1007/s10934-017-0524-9.
  22. Nookala, S. Tollamadugu, N.V.K.V.P. Thimmavajjula, G.K. and Ernest, D. (2015), "Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines", Adv. Nano. Res., 3, 97-109. http://doi.org/10.12989/anr.2015.3.2.097.
  23. Pan, B. Qiu, H. Pan, B. Nie, G. Xiao, L. Lv, L. Zhang, W. Zhang, Q. and Zheng, S. (2010), "Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study", Water Res., 44, 815-824. https://doi.org/10.1016/j.watres.2009.10.027.
  24. Prabhu, P.P. and Prabhu, B. (2018), "A review on removal of heavy metal ions from waste water using natural/ modified bentonite", MATEC Web of Conferences, 144, 02021, 1-13. https://doi.org/10.1051/matecconf/201814402021.
  25. Qasem, N.A.A. Mohammed, R.H. and Lawal, D.U. (2021), "Removal of heavy metal ions from wastewater: A comprehensive and critical review", npj Clean Water, 4, 36, 1-15. https://doi.org/10.1038/s41545-021-00127-0.
  26. Qu, S. Yang, H. Ren, D. Kan, S. Zou, G. Li, D. and Li, M. (1999), "Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions", J. Colloid Interf. Sci., 215, 190-192. https://doi.org/10.1006/jcis.1999.6185.
  27. Storhoff, B.N. Lewis, H.C. Jr. (1977), "Organonitrile complexes of transition metals", Coord. Chem. Rev., 23, 1-29. https://doi.org/10.1016/S0010-8545(00)80329-X.
  28. Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Prog. Cryst. Growth Charact. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
  29. Velusamy, S. Roy, A. Sundaram S. and Mallick, T.K. (2021), "A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater", Treatment Chem. Rec., 21, 1570-1610. https://doi.org/10.1002/tcr.202000153.
  30. Wang, Z. Yuan, X. Cheng, Q. Zhang, T. and Luo, J. (2018), "An efficient and recyclable acid-base bifunctional core-shell nanocatalyst for the one-pot deacetalization-Knoevenagel tandemreaction", New J. Chem., 42, 11610-11615. https://doi.org/10.1039/C8NJ01934G.
  31. Yao, Q. Lu, Z. Zhang, Z. Chen, X. and Lan, Y. (2014), "One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane", Sci. Rep., 4, 7597-7605. https://doi.org/10.1038/srep07597.
  32. Zare, A. and Barzegar, M. (2020), "Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles", Res. Chem. Intermed., 46, 3727-3740. https://doi.org/10.1007/s11164-020-04171-2.
  33. Zare, A. Sadeghi-Takalo, M. Karimi, M. and Kohzadian, A. (2019), "Synthesis, characterization and application of nano-N,N,N',N'-tetramethyl-N-(silica-n-propyl)-N'-sulfo-ethane-1,2-diaminium chloride as a highly efcient catalyst for the preparation of N,N'-alkylidene bisamides", Res. Chem. Int., 45, 2999-3018. https://doi.org/10.1007/s11164-019-03775-7.
  34. Zengin, N. Burhan, H. Savk, A. Goksu1, H. and Sen, F. (2020), "Synthesis of benzylidenemalononitrile byKnoevenagel condensation through monodisperse carbon nanotube-based NiCu nanohybrids", Sci. Rep., 10, 12758. https://doi.org/10.1038/s41598-020-69764-8.
  35. Zhang, S.W. Wang, X.X. Li, J.X. Wen, T. Xu, J.Z. and Wang, X.K. (2014), "Efficient removal of a typical dye and Cr(VI) reduction using N-doped magnetic porous carbon", RSC Adv., 4, 63110-63117. https://doi.org/10.1039/c4ra10189h.
  36. Zhang, Y. Zeng, G.M. tang, L. Chen, J. Zhu, Y. He, X.X. and He, Y. (2015), "Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection", Anal. Chem., 87, 989-996. https://doi.org/10.1021/ac503472p.
  37. Zou, Y. Wang, X. Khan, A. Wang, P. Liu, Y. Alsaedi, A. Hayat, T. and Wang, Z. (2016), "Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review", Environ. Sci. Technol., 50, 7290-7304. https://doi.org/10.1021/acs.est.6b01897.