Acknowledgement
The authors would like to thank the Urmia University research council for partial financial support of this work.
References
- Ahmad, I. Siddiqui, W.A. Qadir, S. and Ahmad, T. (2018), "Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water", J. Mater. Res. Technol., 7, 270-282. https://doi.org/10.1016/j.jmrt.2017.04.010.
- Ahmad, I. Siddiqui, W.A. Ahmad, T. and Siddiqui, V.U. (2019), "Synthesis and characterization of molecularly imprinted ferrite (SiO2@Fe2O3) nanomaterials for the removal of nickel (Ni2+ ions) from aqueous solution", J. Mater. Res. Technol., 8, 1400-1411. https://doi.org/10.1016/j.jmrt.2018.09.011.
- Ahmad, I. Siddiqui, W.A. and Ahmad, T. (2019), "Synthesis and characterization of molecularly imprinted magnetite nanomaterials as a novel adsorbent for the removal of heavy metals from aqueous solution", J. Mater. Res. Technol., 8, 4239-4252. https://doi.org/10.1016/j.jmrt.2019.07.034.
- Baby, R. Saifullah, B. and Husseian, M.Z. (2019), "Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation", Nanoscale Res. Lett., 14, 341-357. https://doi.org/10.1186/s11671-019-3167-8.
- Bresciani, G. Biancalana, L. Pampaloni, G. Zacchini, S. Ciancaleoni, G. and Marchetti, F. (2021), "A comprehensive analysis of the metal-nitrile bonding in an organo-diiron system", Molecules, 26, 7088-7114. https://doi.org/10.3390/molecules26237088.
- Carvalho, H.L. Amorim, A.L. Araujo, I.F. Marino, B.L.B. Jimenez, D.E.Q. Ferreira, R.M.A. Hage-Melim, L.I.P. Souto, R.N.S. Porto, A.L.M. and Ferreira, I.M. (2018), "A Simple and efficient protocol for the Knoevenagel reaction of benzylidenemalononitriles and the evaluation of the larvicidal activity on Aedes Aegypti", 10, 362-374. https://doi.org/10.21577/1984-6835.20180028.
- Farooq, U. Chaudhary, P. Ingole, P.P. Kalam, A. and Ahmad, T. (2020), "Development of cuboidal KNbO3@α-Fe2O3 hybrid nanostructures for improved photocatalytic and photoelectron-catalytic applications", ACS Omega, 5, 20491-2050. https://doi.org/10.1021/acsomega.0c02646.
- Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions from wastewaters: a review", J. Environ. Manage., 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.
- Gemeay, A.H. Keshta, B.E. El-Sharkawy, R.G. and Zaki, A.B. (2020), "Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters", Environ. Sci. Pollut. Res., 27, 32341-32358. https://doi.org/10.1007/s11356-019-06530-y.
- Girgis, E. Adel. D. Tharwat, C. Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano. Res., 3(2), 111-121. http://doi.org/10.12989/anr.2015.3.2.111.
- Hu, B. Hu, L.L. Chen, M.L. and Wang, J.H. (2013), "A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells", Biosens. Bioelectron., 49, 499-505. https://doi.org/10.1016/j.bios.2013.06.004.
- Jadhav, A.L. and Yadav, G.D. (2019), "Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect ofcombustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts", J. Chem. Sci., 131, 79-93. https://doi.org/10.1007/s12039-019-1641-6.
- Jasrotia, R. Suman, Verma, A. Verma, R. Ahmed, J. Godara, S.K. Mehtab, A. Ahmad, T. and Kalia, S. (2022), "Photocatalytic dye degradation efficiency and reusability of Cu-substituted Zn-Mg spinel nanoferrites for wastewater remediation", J. Water Proc. Eng., 48, 102865. https://doi.org/10.1016/j.jwpe.2022.102865.
- Lee, E.M. Gwon, S.Y. Kim, S.H. (2014), "Spectral properties of highly selective chemosensor for Hg2+", Spectrochim. Acta A Mol. Biomol. Spectrosc., 120, 646-649. http://doi.org/10.1016/j.saa.2013.10.061.
- Leeuwen, F.X.R. and Krzyzanowski M. (2000), World Health Organization. Regional Office for Europe, Air quality guidelines for Europe, WHO, Copenhagen, Netherlands.
- Leopold, K. Harwardt, L. Schuster, and M. Schlemmer, (2008), "A new fully automated on-line digestion system for ultra trace analysis of mercury in natural waters by means of FI-CV-AFS", Talanta, 76, 382-388. https://doi.org/10.1016/j.talanta.2008.03.010.
- Machala, J. Zboril, R. and Gedanken, A. (2007), "Amorphous iron(III) oxides: A review", J. Phys. Chem. B, 111, 4003-4018. https://doi.org/10.1021/jp064992s.
- Manna, U. Broderick, A.H. Lynn, and D.M. (2012), "Chemical patterning and physical refinement of reactive super-hydrophobic surfaces", Adv. Mater. 24, 4291-4295. https://doi.org/10.1002/adma.201200903.
- Marandi, G. Maghsoodlou, M.T. Hazeri, N. Habibi-Khorassani, S.M. Akbarzadeh-Torbati, N. Rostami-Cherati, F. Skelton, B.W. and Makha, M. (2011), "Synthesis of cyano-2,3-dihydropyrrolo[1,2-f]phenanthridine derivatives via a domino-Knoevenagel-cyclization", Mol. Divers., 15, 197-201. https://doi.org/10.1007/s11030-010-9254-5.
- Mitra, S. Chakraborty, A.J. Tareq, A.M. Bin Emran, T. Nainu, F. Khusro, A. Idris, A.M. Khandaker, M.U. Osman, H. Alhumaydhi, F.A. and Simal-Gandara, J. (2022), "Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity", J. King Saud Univ. Sci., 34, 101865. https://doi.org/10.1016/j.jksus.2022.101865.
- Mobinikhaledi, A. Moghanian, H. Hosseini-Gazvini, S.M.B. and Dalvand, A. (2018), "Copper containing poly(melamine-terephthaldehyde)-magnetite mesoporous nanoparticles: a highly active and recyclable catalyst for the synthesis of benzimidazole derivatives", J. Porous Mater., 25, 1123-1134. https://doi.org/10.1007/s10934-017-0524-9.
- Nookala, S. Tollamadugu, N.V.K.V.P. Thimmavajjula, G.K. and Ernest, D. (2015), "Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines", Adv. Nano. Res., 3, 97-109. http://doi.org/10.12989/anr.2015.3.2.097.
- Pan, B. Qiu, H. Pan, B. Nie, G. Xiao, L. Lv, L. Zhang, W. Zhang, Q. and Zheng, S. (2010), "Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study", Water Res., 44, 815-824. https://doi.org/10.1016/j.watres.2009.10.027.
- Prabhu, P.P. and Prabhu, B. (2018), "A review on removal of heavy metal ions from waste water using natural/ modified bentonite", MATEC Web of Conferences, 144, 02021, 1-13. https://doi.org/10.1051/matecconf/201814402021.
- Qasem, N.A.A. Mohammed, R.H. and Lawal, D.U. (2021), "Removal of heavy metal ions from wastewater: A comprehensive and critical review", npj Clean Water, 4, 36, 1-15. https://doi.org/10.1038/s41545-021-00127-0.
- Qu, S. Yang, H. Ren, D. Kan, S. Zou, G. Li, D. and Li, M. (1999), "Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions", J. Colloid Interf. Sci., 215, 190-192. https://doi.org/10.1006/jcis.1999.6185.
- Storhoff, B.N. Lewis, H.C. Jr. (1977), "Organonitrile complexes of transition metals", Coord. Chem. Rev., 23, 1-29. https://doi.org/10.1016/S0010-8545(00)80329-X.
- Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Prog. Cryst. Growth Charact. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
- Velusamy, S. Roy, A. Sundaram S. and Mallick, T.K. (2021), "A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater", Treatment Chem. Rec., 21, 1570-1610. https://doi.org/10.1002/tcr.202000153.
- Wang, Z. Yuan, X. Cheng, Q. Zhang, T. and Luo, J. (2018), "An efficient and recyclable acid-base bifunctional core-shell nanocatalyst for the one-pot deacetalization-Knoevenagel tandemreaction", New J. Chem., 42, 11610-11615. https://doi.org/10.1039/C8NJ01934G.
- Yao, Q. Lu, Z. Zhang, Z. Chen, X. and Lan, Y. (2014), "One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane", Sci. Rep., 4, 7597-7605. https://doi.org/10.1038/srep07597.
- Zare, A. and Barzegar, M. (2020), "Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles", Res. Chem. Intermed., 46, 3727-3740. https://doi.org/10.1007/s11164-020-04171-2.
- Zare, A. Sadeghi-Takalo, M. Karimi, M. and Kohzadian, A. (2019), "Synthesis, characterization and application of nano-N,N,N',N'-tetramethyl-N-(silica-n-propyl)-N'-sulfo-ethane-1,2-diaminium chloride as a highly efcient catalyst for the preparation of N,N'-alkylidene bisamides", Res. Chem. Int., 45, 2999-3018. https://doi.org/10.1007/s11164-019-03775-7.
- Zengin, N. Burhan, H. Savk, A. Goksu1, H. and Sen, F. (2020), "Synthesis of benzylidenemalononitrile byKnoevenagel condensation through monodisperse carbon nanotube-based NiCu nanohybrids", Sci. Rep., 10, 12758. https://doi.org/10.1038/s41598-020-69764-8.
- Zhang, S.W. Wang, X.X. Li, J.X. Wen, T. Xu, J.Z. and Wang, X.K. (2014), "Efficient removal of a typical dye and Cr(VI) reduction using N-doped magnetic porous carbon", RSC Adv., 4, 63110-63117. https://doi.org/10.1039/c4ra10189h.
- Zhang, Y. Zeng, G.M. tang, L. Chen, J. Zhu, Y. He, X.X. and He, Y. (2015), "Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection", Anal. Chem., 87, 989-996. https://doi.org/10.1021/ac503472p.
- Zou, Y. Wang, X. Khan, A. Wang, P. Liu, Y. Alsaedi, A. Hayat, T. and Wang, Z. (2016), "Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review", Environ. Sci. Technol., 50, 7290-7304. https://doi.org/10.1021/acs.est.6b01897.