DOI QR코드

DOI QR Code

Comparison of Agrobacterium-mediated Transformation Efficiency in 43 Korean Wheat Cultivars

국내 밀 43개 품종에 대한 아그로박테리움 형질전환 효율성 검정

  • Jae Yoon Kim (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Geon Hee Lee (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Ha Neul Lee (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Do Yoon Hyun (Department of Crops and Forestry, Korea National University of Agriculture & Fisheries)
  • 김재윤 (공주대학교 식물자원학과) ;
  • 이건희 (공주대학교 식물자원학과) ;
  • 이하늘 (공주대학교 식물자원학과) ;
  • 현도윤 (국립한국농수산대학교 작물산림학부)
  • Received : 2023.12.06
  • Accepted : 2024.01.08
  • Published : 2024.01.20

Abstract

Agrobacterium-mediated transformation (AMT) is a method that allows for the stable integration of DNA fragments into the plant genome. Transgenic plants generated through AMT typically exhibit a lower copy number of the transgene compared to those induced by particle bombardment. Furthermore, AMT offers a straightforward and efficient approach for generating transgenic plants. While the transformation efficiency of wheat is comparatively lower than that of other monocot plants such as Rice (Oryza sativa L.) and Maize (Zea mays L.), the cultivars 'Bobwhites' and 'Fielder' are commonly employed for wheat transformation. To date, there have been no reported instances of successful development of transgenic plants using Korean wheat varieties through AMT. This study aims to assess the transformation efficiency of 43 Korean wheat cultivars using the GUS assay, with the goal of identifying suitable Korean wheat cultivars for AMT. The pCAMBIA1301 vector, carrying the β-glucuronidase (GUS) gene, was incorporated into Agrobacterium strain EH105. Following the inoculation of Agrobacterium into immature embryos, GUS assays were conducted 'Saeol', 'Jopum', and 'Jonong' showed 100% (the number of embryos showing GUS spots/the number of embryos used for AMT) among 43 cultivars. In addition, cultivars with more than 70% were 'Saekeumgang', 'Jojung', 'Tapdong', 'Anbaek', 'Dabun', 'Sugang', 'Keumgang', 'Jeokjung', 'Seodun', 'Joeun', 'Dajung', and 'Baekjung'. It seems that the 15 cultivars above showed the possibility of using AMT. On the other hand, 'Yeonbaek', 'Goso', 'Baekgang', and 'Johan' showed less than 20% and GUS spots were not observed in 'Gru', 'Gobun', 'Milseong', and 'Shinmichal-1'. This study explores transient GUS expression in Korean wheat cultivars seven days after AMT. The observed initial high efficiency of transient transformation suggests the potential for subsequent stable transformation efficiency. Korean wheat cultivars demonstrating elevated transient transformation efficiency could serve as promising candidates for the development of stable transgenic wheat.

본 연구는 국내 밀 43 품종에 대한 A. tumefaciens 형질 전환 효율을 검정하기 위해 GUS staining 분석을 수행한 것으로서 대부분의 밀 형질전환 연구가 특정 품종에 국한되어 있기 때문에 국내 장려 밀 품종에 대한 형질전환 효율에 영향을 미치는 조건에 대한 검정이 필요하다. 국내 밀 품종 중 32개에서 1개 이상의 조직에 염색된 신호가 관찰되었으며 4개 품종에서는 염색된 신호가 관찰되지 않았고 6개 품종에서 과도한 A. tumefaciens 성장이 관찰되었고, 7개 품종은 미성숙배의 크기 등의 이유로 GUS staining 분석이 불가능하여 추가 분석에서 제외하였다. 국내 밀 품종별 A. tumefaciens 감염 효율 비교 결과, 백립계 8개 품종 및 적립계 28개 품종에서는 평균적으로 유의한 차이가 없었다. 특히 조농밀, 조품밀, 새올밀, 조중밀, 새금강밀 등 적립계 품종에서 90% 이상의 높은 감염 효율이 관찰되었고, 전체 품종 중 22개는 50% 이상의 효율을 나타내었다. 본 연구를 통하여 조농밀 및 새올밀은 미성숙배에서 전체 조직에서 강한 GUS 발현으로 형질전환에 적합한 품종으로 나타났으며 금강 품종은 백립계에서 상대적으로 높은 발현을 보여 A. tumefaciens을 이용한 형질전환에 적합한 것으로 확인되었다. 추가적인 연구를 통해 품종의 조직배양 효율을 검정하고, 안정적인 GUS 발현 효율을 조사하는 것이 필요하며, 이를 통해 밀 형질전환에 이용 가능한 품종을 더욱 정밀하게 선발할 수 있을 것으로 판단된다. 해당 연구 결과는 국내 밀품종의 형질전환 효율을 높이기 위한 기초 자료로 활용 가능할 것이다.

Keywords

References

  1. Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK. 1996. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant cell reports 16:12-17. https://doi.org/10.1007/BF01275440
  2. Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. 2008. High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4(1):1-12. https://doi.org/10.1186/1746-4811-4-1
  3. Bliffeld, M., J. Mundy, I. Potrykus, and J. Futterer. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics 98: 1079-1086. https://doi.org/10.1007/s001220051170
  4. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115(3): 971-80. https://doi.org/10.1104/pp.115.3.971
  5. Dong S, Qu R. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Science 168(6): 1453-1458. https://doi.org/10.1016/j.plantsci.2005.01.008
  6. Gao, H., Y. Wang, P. Xu, and Z. Zhang. 2018. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers Plant Science 9: 997.
  7. Garfinkel DJ, Nester EW. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol. 144(2): 732-43. https://doi.org/10.1128/jb.144.2.732-743.1980
  8. 777Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson N, Harwood WA. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15: 121.
  9. Hiei Y, Komari T. 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3: 824-834. https://doi.org/10.1038/nprot.2008.46
  10. Howell, T. A., J. L. Steiner, A. D. Schneider, and S. R. Evett. 1995. Evapotranspiration of irrigated winter wheat. Southern High Plains. Trans. ASAE. 38: 745-759. https://doi.org/10.13031/2013.27888
  11. Ishida Y., Tsunashima M., Hiei Y., Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. pp 189-198. In: Wang K. (Eds) Agrobacterium Protocols. Springer, New York, NY.
  12. Kang CS, Kim HS, Cheong YK, Kim JG, Park KH, Park CS. 2008. Flour characteristics and end-use quality of commercial flour produced from Korean wheat and imported wheat. Korean J. Food Preserv 15(5): 687-693.
  13. Lee GH, Kim TK, Choi CH, Kim JY. 2020. Evaluation of tissue culture efficiency in a speed breeding system for stable and sustainable supported wheat (Triticum aestivum) immature embryogenesis. Korean J. Crop Sci. 65(4): 365-376.
  14. Liu, Y, Zhang Z, Fu J, Wang G, Wang J, Liu Y. 2017. Transcriptome analysis of maize immature embryos reveals the roles of cysteine in improving agrobacterium infection efficiency. Frontiers Plant Science 8: 1778.
  15. Mamun, M. A., C. Tang, Y. Sun, Md. N. Islam, P. Liu, X. Wang, and Z. Kang. 2018. Wheat gene TaATG8j contributes to stripe rust resistance. International Journal of Molecular Sciences 19(6): 1666.
  16. Manfroi E, Yamazaki-Lau E, Grando MF, Roesler EA. 2015. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genetics and Molecular Biology 38: 470-476. https://doi.org/10.1590/S1415-475738420150026
  17. Sanchez-Leon S, Gil-Humanes J, Ozuna CV, Gimenez MJ. Sousa C, Voytas DF, Barro F. 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16(4): 902-910. https://doi.org/10.1111/pbi.12837
  18. Shewry PR. 2009. Wheat. J Exp Bot. 60(6):1537-53. https://doi.org/10.1093/jxb/erp058
  19. Thiyagarajan K, Noguera LM, Pacheco M, Govindan V, Vikram P. 2022. Agrobacterium mediated transformation and deciphering SNPs in TaLr67 gene homeologs for gene editing in wheat. bioRxiv: 2022-03.
  20. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J 11: 1369-1376. https://doi.org/10.1046/j.1365-313X.1997.11061369.x
  21. Uauy C. 2017. Wheat genomics comes of age. Curr Opin Plant Biol 36: 142-8. https://doi.org/10.1016/j.pbi.2017.01.007
  22. Vasil V, Castillo AM, Fromm ME, Vasil IK. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology 10: 667-674. https://doi.org/10.1038/nbt0692-667
  23. Wang K, Liu H, Du L, Ye X. 2017. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal 15(5): 614-623. https://doi.org/10.1111/pbi.12660
  24. Wang M, Yuan J, Qin L, Shi W, Xia G, Liu S. 2020. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnology Journal 18(3): 791-804. https://doi.org/10.1111/pbi.13247
  25. Winans SC, Kerstetter RA, Nester EW. 1988. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047-4054. https://doi.org/10.1128/jb.170.9.4047-4054.1988
  26. Wise AA, Liu Z, Binns AN. 2006. Three Methods for the introduction of foreign DNA into Agrobacterium. In: Wang K. (eds) Agrobacterium Protocols. Methods in Molecular Biology vol 343. Humana Press.
  27. Wu H, Sparks C, Amoah B, Jones HD. 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant cell reports 21(7): 659-668. https://doi.org/10.1007/s00299-002-0564-7
  28. Zhang K, Liu J, Zhang Y, Yang Z, Gao C. 2015. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. Journal of genetics and genomics 42(1): 39-42. https://doi.org/10.1016/j.jgg.2014.11.005
  29. Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. 2002. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding 8: 323-333. https://doi.org/10.1023/A:1015243600325
  30. Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. 2017. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11): 1-7.  https://doi.org/10.1093/gigascience/gix097