DOI QR코드

DOI QR Code

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding (Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University) ;
  • Xiao-Wei Ye (Department of Civil Engineering, Zhejiang University) ;
  • Hong Zhang (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University) ;
  • Xue-Song Zhang (State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University)
  • 투고 : 2023.04.27
  • 심사 : 2023.12.27
  • 발행 : 2024.02.10

초록

The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

키워드

과제정보

The work described in this paper was jointly supported by the Ministry of education of Humanities and Social Science project (No. 23YJCZH037), the State Key Laboratory of Mountain Bridge and Tunnel Engineering (Grant No. SKLBT-2210), the Educational Science Planning Project of Zhejiang Province (Grant No. 2023SCG222), and the Scientific Research Project of Zhejiang Provincial Department of Education (Grant No. Y202248682).

참고문헌

  1. Ahmad, M.M. and Khan, F.U. (2020), "Two degree of freedom vibration based electromagnetic energy harvester for bridge health monitoring system", J. Intell. Mater. Syst. Struct., 32(5), 516-536. https://doi.org/10.1177/1045389X20959459.
  2. Akram, G., Mohammad, R.G. and Babak, D. (2018), "Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate", Steel Comp. Struct., 28(2), 139-147. https://doi.org/10.12989/scs.2018.28.2.139.
  3. AliIhsan, C. and Yasin O.O. (2023), "Geopolymer concrete with high strength, workability and setting time using recycled Steel wires and basalt powder", Steel Comp. Struct., 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689.
  4. Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A. and Sanchez-Silva, M. (2009), "Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes", Struct. Saf, 31(1), 84-96. https://doi.org/10.1016/j.strusafe.2008.04.001.
  5. Biondini, F. and Frangopol, D.M. (2016), "Life-cycle performance of deteriorating structural systems under uncertainty: review", J. Struct. Eng., 142(9), F4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544.
  6. BS 7608 (2014), Guide to Fatigue Design and Assessment of Steel Products, London, British Standards Institution.
  7. BS 7910 (2013), "Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, London, British Standards Institution.
  8. Chen, Y., Jiang, Z. W., Xu, Q. and Ren, C. (2023), "Experimental study on fatigue behavior of innovative hollow composite bridge slabs", Steel Comp. Struct., 46(6), 745-757. https://doi.org/10.12989/scs.2023.46.6.745.
  9. Chen, Z.G., Jafarzadeh, S., Zhao, J.M. and Bobaru, F. (2021), "A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking", J. Mech. Phys. Solids, 146, 104203. https://doi.org/10.1016/j.jmps.2020.104203.
  10. Cheng, A.K. and Chen, N.Z. (2018), "An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels", Eng. Failure Anal., 84, 262-275. https://doi.org/10.1016/j.engfailanal.2017.11.012.
  11. Deng, Y., Li, A.Q., Feng, D.M., Chen, X. and Zhang, M. (2020), "Service life prediction for steel wires in hangers of a newly built suspension bridge considering corrosion fatigue and traffic growth", Struct. Control Health Monit., 27(12), e2642. https://doi.org/10.1002/stc.2642.
  12. Ding, Y., Hang, D., Wei, Y.J., Zhang, X.L., Ma, S.Y., Liu, Z.X. and Han, Z. (2023d), "Settlement prediction of existing metro induced by new metro construction with machine learning based on SHM data: a comparative study", J. Civ. Struct. Health Monit., 13(6-7), 1447-1457. https://doi.org/10.1007/s13349-023-00714-4.
  13. Ding, Y., Ye, X., Ding, Z., Wei, G., Cui, Y., Han, Z. and Jin, T. (2023h), "Short-term tunnel-settlement prediction based on Bayesian wavelet: a probability analysis method", J. Zhejiang Univ. Sci. A, 24(11), 960-977. https://doi.org/10.1631/jzus.A2200599.
  14. Ding, Y., Ye, X.W. and Guo, Y. (2023a), "Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge", J. Civ. Struct. Health Monit., 13(3), 579-589. https://doi.org/10.1007/s13349-022-00662-5.
  15. Ding, Y., Ye, X.W. and Guo, Y. (2023b), "Wind load assessment with the JPDF of wind speed and direction based on SHM data", Structures, 47(1), 2074-2080. https://doi.org/10.1016/j.istruc.2022.12.028.
  16. Ding, Y., Ye, X.W. and Guo, Y. (2023c), "A multi-step direct and indirect strategy for predicting wind direction based on EMD-LSTM model", Struct. Control Health Monit., 4950487. https://doi.org/10.1155/2023/4950487.
  17. Ding, Y., Ye, X.W. and Guo, Y. (2023f), "Copula-based JPDF of wind speed, wind direction, wind angle and temperature with SHM data", Proba. Eng. Mech., 103483. https://doi.org/10.1016/j.probengmech.2023.103483.
  18. Ding, Y., Ye, X.W. and Su, Y.H. (2023g), "A framework of cable wire failure mode deduction based on Bayesian network", Structures, 57, 104996. https://doi.org/10.1016/j.istruc.2023.104996.
  19. Ding, Y., Ye, X.W., Guo, Y., Zhang, R. and Ma, Z. (2023e), "Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven", Proba. Eng. Mech., 73, 103475. https://doi.org/10.1016/j.probengmech.2023.103475.
  20. Gallo, P., Lehto, P., Malitckii, E., and Remes, H. (2022), "Influence of microstructural deformation mechanisms and shear strain localisations on small fatigue crack growth in ferritic stainless steel", Int. J. Fatigue, 163, 107024. https://doi.org/10.1016/j.ijfatigue.2022.107024.
  21. GB50017-2017 (2017), Standard for Design of Steel Structures, China Architecture and Building Press.
  22. Ge, B. and Kim, S. (2021), "Probabilistic service life prediction updating with inspection information for RC structures subjected to coupled corrosion and fatigue", Eng. Struct., 238(4), 112260. https://doi.org/10.1016/j.engstruct.2021.112260.
  23. Guo, Q., Xing, Y., Lei, H., Jiao, J. and Chen, Q. (2020), "Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint", Steel Comp. Struct., 36(1), 75. ttps://doi.org/10.12989/scs.2020.36.1.075.
  24. Guo, Z., Ma, Y., Wang, L. and Zhang, J. (2019), "Modelling guidelines for corrosion-fatigue life prediction of concrete bridges: considering corrosion pit as a notch or crack", Eng. Failure Anal., 105, 883-895. https://doi.org/10.1016/j.engfailanal.2019.07.046.
  25. Han, Q., Yang, G., Xu, J. and Wang, Y. (2017), "Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM", Steel Comp. Struct., 25, 57-65. https://doi.org/10.12989/scs.2017.25.1.057.
  26. Han, X., Yang, D. Y. and Frangopol, D.M. (2019), "Probabilistic life-cycle management framework for ship structures subjected to coupled corrosion-fatigue deterioration processes", J. Struct. Eng., 145(10), 04019116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002406.
  27. Hosseini, A., Sahrapeyma, A. and Marefat, M.S. (2013), "A reliability-based methodology for considering corrosion effects on fatigue deterioration in steel bridges-Part I: Methodology", Int. J. Steel Struct., 13(4), 645-656. https://doi.org/10.1007/s13296-013-4006-x.
  28. https://doi.org/10.1155/2023/4950487.
  29. Jiang, C., Wu, C. and Jiang, X. (2018), "Experimental study on fatigue performance of corroded high-strength steel wires used in bridges", Constr. Build. Mater., 187(10), 681-690. https://doi.org/10.1016/j.conbuildmat.2018.07.249.
  30. Jiang, C., Wu, C., Cai, C.S., Jiang, X. and Xiong, W. (2020), "Corrosion fatigue analysis of stay cables under combined loads of random traffic and wind", Eng. Struct., 206, 110153. https://doi.org/10.1016/j.engstruct.2019.110153.
  31. Kreider, K.L., Mckinnon, J.M., Clemons, C.B., Lillard, R.S. and Young, G.W. (2020), "Modeling unidirectional corrosion damage evolution in a SS 316 pencil-electrode experiment", Corros. Sci., 179(10), 109086. https://doi.org/10.1016/j.corsci.2020.109086.
  32. Li, Z.R., Zhang, D.C., Wu, H.Y., Huang, F.H., Hong, W. and Zang, X.S. (2018), "Fatigue properties of welded Q420 high strength steel at room and low temperatures", Constr. Build. Mater., 189(11), 955-966. https://doi.org/10.1016/j.conbuildmat.2018.07.231.
  33. Liu, X.D., Han, W.S., Yuan, Y.G., Chen, X. and Xie, Q. (2021), "Corrosion fatigue assessment and reliability analysis of short suspender of suspension bridge depending on refined traffic and wind load condition", Eng. Struct., 234, 111950. https://doi.org/10.1016/j.engstruct.2021.111950.
  34. Liu, Z., Guo, T., Han, D. and Li, A. (2020), "Experimental study on corrosion-fretting fatigue behavior of bridge cable wires", J. Bridge Eng., 12(25), 04020104. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001642.
  35. Liu, Z., Guo, T., Hebdon, M.H. and Zhang, Z.L. (2018), "Corrosion fatigue analysis and reliability assessment of short suspenders in suspension and arch bridges", J. Perform Constr. Fac., 32(5), 04018060. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001203.
  36. Lu, D., Yan, W. and Lei, N. (2019), "A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect", Eng. Struct., 178(1), 309-317. https://doi.org/10.1016/j.engstruct.2018.10.028.
  37. Ma, L. (2000), "Research on fatigue performance of domestic 1860 grade low relaxation prestressed steel strand", Railway Standard Design, 5, 21-23. (in Chinese) https://doi.org/10.13238/j.issn.1004-2954.2000.05.006.
  38. Ma, Y., Guo, Z., Wang, L. and Zhang, J. (2020), "Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage", J. Struct. Eng., 146(7), 04020117. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002666.
  39. Ma, Y.F., Chen Z.C., Ye, J., Wang L. and Zhang J.R. (2019), "Experimental and numerical study on fatigue crack growth of bridge suspender", J. Disaster Prevent. Mitigation Eng., 39(1), 23-30. (in Chinese) https://doi.org/10.13409/j.cnki.jdpme.2019.01.004.
  40. Malagi, R.R. and Danawade, B.A. (2015), "Fatigue behavior of circular hollow tube and wood filled circular hollow steel tube", Steel Comp. Struct., 19, 585-599. https://doi.org/10.12989/scs.2015.19.3.585
  41. Motlagha, H.R.E. and Rahai, A. (2022), "Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load", Steel Comp. Struct., 43(6), 809-819. https://doi.org/10.12989/scs.2022.43.6.809.
  42. Murtaza, G. and Akid, R. (1996), "Corrosion fatigue short crack growth behaviour in a high strength steel", Int. J. Fatigue, 18(8), 557-566. https://doi.org/10.1016/0142-1123(95)00095-X.
  43. Nakamura, S. and Suzumura, K. (2013), "Experimental study on fatigue strength of corroded bridge wires", J. Bridge Eng., 18(3), 200-209. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000366.
  44. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng., 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250.
  45. Peng, D., Jones, R., Berto, F. and Razavi, S.M.J. (2018), "Effect of corrosion and fatigue on the remaining life of structures and its implication to additive manufacturing", Frattura Ed Integrita Strutturale, 12(45), 33-44. https://doi.org/10.3221/IGF-ESIS.45.03.
  46. Pipinato, A., Pellegrino, C., Fregno, G. and Modena, C. (2012), "Influence of fatigue on cable arrangement in cable-stayed bridges", Int. J. Steel Struct., 12(1), 107-123. https://doi.org/10.1007/s13296-012-1010-5.
  47. Pitta, S., Rojas, J.I., Roure, F., Crespo, D. and Wahab, M.A. (2022), "An experimental and numerical investigation on fatigue of composite and metal aircraft structures", Steel Comp. Struct., 43(1), 19-30. https://doi.org/10.12989/scs.2022.43.1.019.
  48. Shi, P. and Mahadevan, S. (2003), "Corrosion fatigue and multiple site damage reliability analysis", Int. J. Fatigue, 25(6), 457-469. https://doi.org/10.1016/S0142-1123(03)00020-3.
  49. Sriraman, M.R. and Pidaparti, R.M. (2010), "Crack initiation life of materials under combined pitting corrosion and cyclic loading", J. Mater. Eng. Perform, 19(1), 7-12. https://doi.org/10.1007/s11665-009-9379-9.
  50. Su, H., Wang, J. and Du, J. (2020), "Fatigue behavior of corroded non-load-carrying bridge weathering steel q345qdnh fillet welded joints", Structures, 26, 859-869. https://doi.org/10.1016/j.istruc.2020.05.019.
  51. Wang, J., Zhang, Y., Sun, Q., Liu, S. and Lu, H. (2016), "Giga-fatigue life prediction of fv520b-i with surface roughness", Mater. Des., 89, 1028-1034. https://doi.org/10.1016/j.matdes.2015.10.104.
  52. Wang, Q.D., Ji, B.H., Gao, T. and Fu, Z.Q. (2021), "Effective-notch-stress-based fatigue evaluation of rib-deck welds integrating the full-range s-n curve concept", J. Constr. Steel Res., 179(9), 106541. https://doi.org/10.1016/j.jcsr.2021.106541.
  53. Wang, Y. and Zheng, Y. (2019), "Research on corrosion fatigue performance and multiple fatigue sources fracture process of corroded steel wires", Adv. Civ. Eng., 4, 1-24. https://doi.org/10.1155/2019/4914359.
  54. Wang, Y., Zheng, Y.Q., Zhang, W.H. and Lu, Q.R. (2020), "Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation", Theor. Appl. Fract. Mec., 107, 102571. https://doi.org/10.1016/j.tafmec.2020.102571.
  55. Wang, Y.D., Shi, T., Nie, B., Wang, H. and Xu, S.H. (2021), "Seismic performance of steel columns corroded in general atmosphere", Steel Comp. Struct., 40(2), 217-241. https://doi.org/10.12989/scs.2021.40.2.217.
  56. Wu, Q., Chen, X., Fan, Z., Nie, D. and Wei, R. (2017), "Corrosion fatigue behavior of fv520b steel in water and salt-spray environments", Eng. Failure Anal., 79, 422-430. https://doi.org/10.1016/j.engfailanal.2017.05.012.
  57. Xian, Z.X., Xu, X.T. and Yang, F. (2023), "Effect of cyclic load on fatigue damage of single fracture rock mass", J. Changsha Univ. Sci. Tech. (Nat Sci), 20(2), 125-136. https://doi.org/10.19951/j.cnki.1672-9331.20221116003.
  58. Xu, C., Su, Q. and Masuya, H. (2017), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Comp. Struct., 24, 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
  59. Xue, S., Shen, R., Chen, W. and Miao, R. (2020), "Corrosion fatigue failure analysis and service life prediction of high strength steel wire", Eng. Failure Anal., 110, 104440. https://doi.org/10.1016/j.engfailanal.2021.105665.
  60. Xue, S., Shen, R., Chen, W. and Shen, L. (2020), "The corrosion-fatigue measurement test of the Zn-Al alloy coated steel wire", Structures, 27, 1195-1201. https://doi.org/10.1016/j.istruc.2020.07.022.
  61. Yang, D.H., Yi, T.H. and Li, H.N. (2017), "Coupled fatigue-corrosion failure analysis and performance assessment of RC bridge deck slabs", J. Bridge Eng., 22(10), 04017077. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001108.
  62. Yang, S., Yang, H., Liu, G., Huang, Y. and Wang, L. (2016), "Approach for fatigue damage assessment of welded structure considering coupling effect between stress and corrosion", Int. J. Fatigue, 88, 88-95. https://doi.org/10.1016/j.ijfatigue.2016.03.024.
  63. Ye, X., W, Liu, T. and Ni, Y.Q. (2017), "Probabilistic corrosion fatigue life assessment of a suspension bridge instrumented with long-term structural health monitoring system", Adv. Struct. Eng., 20(5), 136943321769834. https://doi.org/10.1177/1369433217698345.
  64. Zhang, W. and Yuan, H. (2014), "Corrosion fatigue effects on life estimation of deteriorated bridges under vehicle impacts", Eng. Struct., 71, 128-136. https://doi.org/10.1016/j.engstruct.2014.04.004.
  65. Zhang, W., Wu, M. and Zhu, J. (2017), "Evaluation of vehicular dynamic effects for the life cycle fatigue design of short-span bridges", Steel Constr., 10(1), 37-46. https://doi.org/10.1002/stco.201710008.
  66. Zhang, Y., Zheng, K., Heng, J. and Zhu, J. (2019), "Corrosion-Fatigue evaluation of uncoated weathering steel bridges", App. Sci., 9(17), 3461. https://doi.org/10.3390/app9173461.
  67. Zheng, X.L., Xie, X. and Li, X.Z. (2017), "Experimental study and residual performance evaluation of corroded high-tensile steel wires", J. Bridge Eng., 22(11), 04017091. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001114.