DOI QR코드

DOI QR Code

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Xun Zhang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Cong Li (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Keer Cui (Department of Bridge Engineering, Southwest Jiaotong University)
  • 투고 : 2023.03.21
  • 심사 : 2023.11.14
  • 발행 : 2024.02.10

초록

Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China [grant No. 51978580].

참고문헌

  1. Allahyari, H., Nikbin, I.M., Rahimi, S. and Allahyari, A. (2018), "Experimental measurement of dynamic properties of composite slabs from frequency response", Measurement, 114, 150-161. https://doi.org/10.1016/j.measurement.2017.09.030.
  2. Alten, K. and Flesch, K. (2012), "Finite element simulation prior to reconstruction of a steel railway bridge to reduce structureborne noise", Eng. Struct., 53(2), 83-88. https://doi.org/10.1016/j.engstruct.2011.11.001.
  3. Augusztinovicz, F., Marki, F., Gulyas, K., Nagy, A.B., Fiala, P. and Gajdatsy, P. (2006), "Derivation of train track isolation requirement for a steel road bridge based on vibro-acoustic analyses", J. Sound Vib., 293(3-5), 953-964. https://doi.org/10.1016/j.jsv.2005.12.018.
  4. Bos, J. (1997), "Dutch group cuts steel bridge noise", Int. Railway J. Rapid Transit Rev., 38(9), 15-19.
  5. Capasso, P.J., Petrone, G., Kleinfeller, N., Rosa, S.D. and Adams, C. (2021), "Modeling of fiber composite structures for the calculation of the structural intensity", Compos. Struct., 262, 113631. https://doi.org/10.1016/j.compstruct.2021.113631.
  6. Chen, Y.H., Jin, G.Y., Zhu, M.G., Liu, Z.G., Du, J.Y. and Li, W.L. (2012), "Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure", J. Sound Vib., 331(4), 849-867. https://doi.org/10.1016/j.jsv.2011.10.002.
  7. Cho, D.S., Kim, K.S. and Kim, B.H. (2010), "Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system", Int. J. Nav. Arch. Ocean, 2(2), 87-95. https://doi.org/10.2478/ijnaoe-2013-0023.
  8. Cho, D.S., Choi, T.M., Kim, J.H. and Vladimir, N. (2016), "Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method", Thin Wall. Struct., 109, 1-12. https://doi.org/10.1016/j.tws.2016.09.015.
  9. Cho, D.S., Choi, T.M., Kim, J.H. and Vladimir, N. (2018), "Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique", Int. J. Nav. Arch. Ocean, 10(5), 583-595. https://doi.org/10.1016/j.ijnaoe.2017.11.003.
  10. Fang, C. and Zhang, Y.H. (2021), "An improved hybrid FE-SEA model using modal analysis for the mid-frequency vibroacoustic problems", Mech. Syst. Signal. Process., 161, 107957. https://doi.org/10.1016/j.ymssp.2021.107957.
  11. Gavric, L. and Pavic, G. (1993), "A finite element method for computation of structural intensity by the normal mode approach", J. Sound Vib., 164(1), 29-43. https://doi.org/10.1006/jsvi.1993.1194.
  12. Gibbs, B.M. and Craven, P.G. (1981), "Sound transmission and mode coupling at junctions of thin plates, part II: Parametric survey", J. Sound Vib., 77(3), 429-435. https://doi.org/10.1016/s0022-460x(81)80178-2.
  13. Gu, Y.W., Nie, X., Yan, A.G., Zeng, J.H., Liu, Y.F. and Jiang, Y.X. (2022), "Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge", Appl. Acoust., 192, 108757. https://doi.org/10.1016/j.apacoust.2022.108757.
  14. He, P., Xiang, Y., Zhou, Y. and Li, H. (2020), "Vibration energy distribution and transfer characteristics of coupled plates under medium-low frequency excitation", Noise Vib. Control, 40(02), 13-22. (in Chinese with English abstract) https://10.3969/j.issn.1006-1355.2020.02.003.
  15. Hwang, E.S., Kim, D.Y. and Jang, S.H. (2017), "Analysis of dynamic response and vibration mitigation for steel box girder railway bridges", J. Korean Soc. Steel Const., 29(6), 487-495. https://doi.org/10.7781/kjoss.2017.29.6.487.
  16. Janas, L. (2021), "Experimental study on vibration and noise characteristics of steel-concrete railway bridge.", Sensors, 21(23), 7964. https://doi.org/10.3390/s21237964.
  17. Jiang, L.Z., Lai, Z.P., Zhou, W.B. and Chai, X.L. (2018), "Natural vibration analysis of steel-concrete composite box beam using improved finite beam element method", Adv. Struct. Eng., 21(6), 918-932. https://doi.org/10.1177/1369433217734638.
  18. Kong, D.R., Zhang, X., Lu, B., Li, C. and Liu, Y.Y. (2023), "Identifying dominant components of vibrational energy flow in U-rib plates of bridge based on structural intensity", J. Low Freq. Noise V. A., 42(1), 192-208. https://doi.org/10.1177/14613484221122732.
  19. Li, K., Sheng, L. and Zhao, D.Y. (2010), "Investigation on vibration energy flow characteristics in coupled plates by visualizaiton techniques", J. Mar. Sci. Tech., 18(6), 907-914. https://doi.org/10.51400/2709-6998.1950.
  20. Lin, T.R. and Pan, J. (2009), "Vibration characteristics of a boxtype structure", J. Vib. Acoust., 131(3), 031004. https://doi.org/10.1115/1.3025831.
  21. Lin, W., Taniguchi, N., Yoda, T., Hansaka, M., Satake, S. and Sugino, Y. (2018), "Renovation of existing steel railway bridges: Field test and numerical simulation", Adv. Struct. Eng., 21(6), 809-823. https://doi.org/10.1177/1369433217732498.
  22. Liu L.Y., Qin, J.L., Zhou, Y.L., Xi, R. and Peng, S.Y. (2019), "Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis", Struct. Eng. Mech., 72(4), 421-432. https://doi.org/10.12989/sem.2019.72.4.421.
  23. Liu, Q.M., Liu, L.Y., Chen, H.P., Zhou, Y.L. and Lei, X.Y. (2020a), "Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis", Steel Compos. Struct., 37(3), 291-306. https://doi.org/10.12989/scs.2020.37.3.291.
  24. Liu, Q.M., Thompson, D.J., Xu, P.P., Feng, Q.S. and Li, X.Z. (2020b), "Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method", J. Sound Vib., 471, 115197. https://doi.org/10.1016/j.jsv.2020.115197.
  25. Liu, X., Zhang, N., Sun, Q. and. Wu, Z.Z. (2022), "Experimental and numerical study on vibration and structure-borne noise of composite box-girder railway bridges", Int. J. Rail Transp., 1-19. https://doi.org/10.1080/23248378.2022.2131641.
  26. Ma, Y.Q., Zhao, Q.J., Zhao, W., Liu, B.B. and Hao, L. (2020a), "Intrinsic physical relationships between rotor modal shapes and instantaneous vibrational energy flow transmission characteristics: Theoretical and numerical analysis and application", Chinese J. Aeronaut., 33(2), 3288-3305. https://doi.org/10.1016/j.cja.2020.05.006.
  27. Ma, Y.Q., Zhao, Q.J., Zhang, K., Xu, M. and Zhao, W. (2020b), "Analysis of instantaneous vibrational energy flow for an aeroengine dual-rotor-support-casing coupling system", J Eng. Gas Turb. Power, 142(5), 051011. https://doi.org/10.1115/1.4046418.
  28. Malveiro, J., Ribeiro, D., Sousa, C. and Calcada, R. (2018), "Model updating of a dynamic model of a composite steelconcrete railway viaduct based on experimental tests", Eng. Struct., 164, 40-52. https://doi.org/10.1016/j.engstruct.2018.02.057.
  29. Noiseux, D.U. (1970), "Measurement of power flow in uniform beams and plates", J. Acoust. Soc. of Am., 47(1B), 238-247. https://doi.org/10.1121/1.1911472.
  30. Petrone, G., Vendittis, M.D., Rosa, S.D. and Franco, F. (2016), "Numerical and experimental investigations on structural intensity in plates", Compos. Struct., 140, 94-105. https://doi.org/10.1016/j.compstruct.2015.12.034.
  31. Park, D.H., Hong, S.Y., Kil, H.G. and Jeon, J.J. (2001), "Power flow models and analysis of in-plane waves in finite coupled thin plates", J. Sound. Vib., 244(4), 651-668. https://doi.org/10.1006/jsvi.2000.3517.
  32. Saito, M., Sugimoto, I. and Sasaki, E. (2015), "Experimental study on noise reduction effect of installing concrete deck on existing steel girders", Int. J. Steel Struct., 15, 205-212. https://10.1007/s13296-015-3015-3.
  33. Sun, K.Q., Zhang, N., Liu, X. and Tao, Y.X. (2021), "An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams", Steel Compos. Struct., 38(3), 281-291. https://doi.org/10.12989/scs.2021.38.3.281.
  34. Thompson, D. (2009), Railway noise and vibration: mechanisms, modelling and means of control, (1st edition), ButterworthHeinemann Elsevier Ltd, Oxford, UK.
  35. Wang, B., Li, D.X., Jiang, J.P. and Liao, Y.H. (2016), "A judging principle of crucial vibrational transmission paths in plates", J. Sound Vib., 380, 146-164. https://doi.org/10.1016/j.jsv.2016.06.006.
  36. Xu, X.D., Lee, H.P., Wang, Y.Y. and Lu, C. (2004), "The energy flow analysis in stiffened plates of marine structures", Thin Wall. Struct., 42(7), 979-994. https://doi.org/10.1016/j.tws.2004.03.006.
  37. Xu, X.D., Lee, H.P., Lu, C. and Guo, J.Y. (2005), "Streamline representation for structural intensity fields", J. Sound Vib., 280, 449-454. https://doi.org/10.1016/j.jsv.2004.02.008.
  38. Zhang, X., Luo, H., Kong, D.R., Chen, T. and Li, X. (2021), "Vibro-acoustic performance of steel-concrete composite and prestressed concrete box girders subjected to train excitations", Railway Engineering Science, 29, 336-349. https://doi.org/10.1007/s40534-021-00250-1.
  39. Zhang, X., Liu, Z.Q., Kong, D.R., Chen, T. and Zhang, J.R. (2022), "Vibration characteristics of channel steel-concrete composite girders: An experimental and numerical analysis", J. Low Freq. Noise V. A., 41(3), 1030-1043. https://10.1177/14613484221086373.