Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China [grant No. 51978580].
References
- Allahyari, H., Nikbin, I.M., Rahimi, S. and Allahyari, A. (2018), "Experimental measurement of dynamic properties of composite slabs from frequency response", Measurement, 114, 150-161. https://doi.org/10.1016/j.measurement.2017.09.030.
- Alten, K. and Flesch, K. (2012), "Finite element simulation prior to reconstruction of a steel railway bridge to reduce structureborne noise", Eng. Struct., 53(2), 83-88. https://doi.org/10.1016/j.engstruct.2011.11.001.
- Augusztinovicz, F., Marki, F., Gulyas, K., Nagy, A.B., Fiala, P. and Gajdatsy, P. (2006), "Derivation of train track isolation requirement for a steel road bridge based on vibro-acoustic analyses", J. Sound Vib., 293(3-5), 953-964. https://doi.org/10.1016/j.jsv.2005.12.018.
- Bos, J. (1997), "Dutch group cuts steel bridge noise", Int. Railway J. Rapid Transit Rev., 38(9), 15-19.
- Capasso, P.J., Petrone, G., Kleinfeller, N., Rosa, S.D. and Adams, C. (2021), "Modeling of fiber composite structures for the calculation of the structural intensity", Compos. Struct., 262, 113631. https://doi.org/10.1016/j.compstruct.2021.113631.
- Chen, Y.H., Jin, G.Y., Zhu, M.G., Liu, Z.G., Du, J.Y. and Li, W.L. (2012), "Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure", J. Sound Vib., 331(4), 849-867. https://doi.org/10.1016/j.jsv.2011.10.002.
- Cho, D.S., Kim, K.S. and Kim, B.H. (2010), "Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system", Int. J. Nav. Arch. Ocean, 2(2), 87-95. https://doi.org/10.2478/ijnaoe-2013-0023.
- Cho, D.S., Choi, T.M., Kim, J.H. and Vladimir, N. (2016), "Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method", Thin Wall. Struct., 109, 1-12. https://doi.org/10.1016/j.tws.2016.09.015.
- Cho, D.S., Choi, T.M., Kim, J.H. and Vladimir, N. (2018), "Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique", Int. J. Nav. Arch. Ocean, 10(5), 583-595. https://doi.org/10.1016/j.ijnaoe.2017.11.003.
- Fang, C. and Zhang, Y.H. (2021), "An improved hybrid FE-SEA model using modal analysis for the mid-frequency vibroacoustic problems", Mech. Syst. Signal. Process., 161, 107957. https://doi.org/10.1016/j.ymssp.2021.107957.
- Gavric, L. and Pavic, G. (1993), "A finite element method for computation of structural intensity by the normal mode approach", J. Sound Vib., 164(1), 29-43. https://doi.org/10.1006/jsvi.1993.1194.
- Gibbs, B.M. and Craven, P.G. (1981), "Sound transmission and mode coupling at junctions of thin plates, part II: Parametric survey", J. Sound Vib., 77(3), 429-435. https://doi.org/10.1016/s0022-460x(81)80178-2.
- Gu, Y.W., Nie, X., Yan, A.G., Zeng, J.H., Liu, Y.F. and Jiang, Y.X. (2022), "Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge", Appl. Acoust., 192, 108757. https://doi.org/10.1016/j.apacoust.2022.108757.
- He, P., Xiang, Y., Zhou, Y. and Li, H. (2020), "Vibration energy distribution and transfer characteristics of coupled plates under medium-low frequency excitation", Noise Vib. Control, 40(02), 13-22. (in Chinese with English abstract) https://10.3969/j.issn.1006-1355.2020.02.003.
- Hwang, E.S., Kim, D.Y. and Jang, S.H. (2017), "Analysis of dynamic response and vibration mitigation for steel box girder railway bridges", J. Korean Soc. Steel Const., 29(6), 487-495. https://doi.org/10.7781/kjoss.2017.29.6.487.
- Janas, L. (2021), "Experimental study on vibration and noise characteristics of steel-concrete railway bridge.", Sensors, 21(23), 7964. https://doi.org/10.3390/s21237964.
- Jiang, L.Z., Lai, Z.P., Zhou, W.B. and Chai, X.L. (2018), "Natural vibration analysis of steel-concrete composite box beam using improved finite beam element method", Adv. Struct. Eng., 21(6), 918-932. https://doi.org/10.1177/1369433217734638.
- Kong, D.R., Zhang, X., Lu, B., Li, C. and Liu, Y.Y. (2023), "Identifying dominant components of vibrational energy flow in U-rib plates of bridge based on structural intensity", J. Low Freq. Noise V. A., 42(1), 192-208. https://doi.org/10.1177/14613484221122732.
- Li, K., Sheng, L. and Zhao, D.Y. (2010), "Investigation on vibration energy flow characteristics in coupled plates by visualizaiton techniques", J. Mar. Sci. Tech., 18(6), 907-914. https://doi.org/10.51400/2709-6998.1950.
- Lin, T.R. and Pan, J. (2009), "Vibration characteristics of a boxtype structure", J. Vib. Acoust., 131(3), 031004. https://doi.org/10.1115/1.3025831.
- Lin, W., Taniguchi, N., Yoda, T., Hansaka, M., Satake, S. and Sugino, Y. (2018), "Renovation of existing steel railway bridges: Field test and numerical simulation", Adv. Struct. Eng., 21(6), 809-823. https://doi.org/10.1177/1369433217732498.
- Liu L.Y., Qin, J.L., Zhou, Y.L., Xi, R. and Peng, S.Y. (2019), "Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis", Struct. Eng. Mech., 72(4), 421-432. https://doi.org/10.12989/sem.2019.72.4.421.
- Liu, Q.M., Liu, L.Y., Chen, H.P., Zhou, Y.L. and Lei, X.Y. (2020a), "Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis", Steel Compos. Struct., 37(3), 291-306. https://doi.org/10.12989/scs.2020.37.3.291.
- Liu, Q.M., Thompson, D.J., Xu, P.P., Feng, Q.S. and Li, X.Z. (2020b), "Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method", J. Sound Vib., 471, 115197. https://doi.org/10.1016/j.jsv.2020.115197.
- Liu, X., Zhang, N., Sun, Q. and. Wu, Z.Z. (2022), "Experimental and numerical study on vibration and structure-borne noise of composite box-girder railway bridges", Int. J. Rail Transp., 1-19. https://doi.org/10.1080/23248378.2022.2131641.
- Ma, Y.Q., Zhao, Q.J., Zhao, W., Liu, B.B. and Hao, L. (2020a), "Intrinsic physical relationships between rotor modal shapes and instantaneous vibrational energy flow transmission characteristics: Theoretical and numerical analysis and application", Chinese J. Aeronaut., 33(2), 3288-3305. https://doi.org/10.1016/j.cja.2020.05.006.
- Ma, Y.Q., Zhao, Q.J., Zhang, K., Xu, M. and Zhao, W. (2020b), "Analysis of instantaneous vibrational energy flow for an aeroengine dual-rotor-support-casing coupling system", J Eng. Gas Turb. Power, 142(5), 051011. https://doi.org/10.1115/1.4046418.
- Malveiro, J., Ribeiro, D., Sousa, C. and Calcada, R. (2018), "Model updating of a dynamic model of a composite steelconcrete railway viaduct based on experimental tests", Eng. Struct., 164, 40-52. https://doi.org/10.1016/j.engstruct.2018.02.057.
- Noiseux, D.U. (1970), "Measurement of power flow in uniform beams and plates", J. Acoust. Soc. of Am., 47(1B), 238-247. https://doi.org/10.1121/1.1911472.
- Petrone, G., Vendittis, M.D., Rosa, S.D. and Franco, F. (2016), "Numerical and experimental investigations on structural intensity in plates", Compos. Struct., 140, 94-105. https://doi.org/10.1016/j.compstruct.2015.12.034.
- Park, D.H., Hong, S.Y., Kil, H.G. and Jeon, J.J. (2001), "Power flow models and analysis of in-plane waves in finite coupled thin plates", J. Sound. Vib., 244(4), 651-668. https://doi.org/10.1006/jsvi.2000.3517.
- Saito, M., Sugimoto, I. and Sasaki, E. (2015), "Experimental study on noise reduction effect of installing concrete deck on existing steel girders", Int. J. Steel Struct., 15, 205-212. https://10.1007/s13296-015-3015-3.
- Sun, K.Q., Zhang, N., Liu, X. and Tao, Y.X. (2021), "An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams", Steel Compos. Struct., 38(3), 281-291. https://doi.org/10.12989/scs.2021.38.3.281.
- Thompson, D. (2009), Railway noise and vibration: mechanisms, modelling and means of control, (1st edition), ButterworthHeinemann Elsevier Ltd, Oxford, UK.
- Wang, B., Li, D.X., Jiang, J.P. and Liao, Y.H. (2016), "A judging principle of crucial vibrational transmission paths in plates", J. Sound Vib., 380, 146-164. https://doi.org/10.1016/j.jsv.2016.06.006.
- Xu, X.D., Lee, H.P., Wang, Y.Y. and Lu, C. (2004), "The energy flow analysis in stiffened plates of marine structures", Thin Wall. Struct., 42(7), 979-994. https://doi.org/10.1016/j.tws.2004.03.006.
- Xu, X.D., Lee, H.P., Lu, C. and Guo, J.Y. (2005), "Streamline representation for structural intensity fields", J. Sound Vib., 280, 449-454. https://doi.org/10.1016/j.jsv.2004.02.008.
- Zhang, X., Luo, H., Kong, D.R., Chen, T. and Li, X. (2021), "Vibro-acoustic performance of steel-concrete composite and prestressed concrete box girders subjected to train excitations", Railway Engineering Science, 29, 336-349. https://doi.org/10.1007/s40534-021-00250-1.
- Zhang, X., Liu, Z.Q., Kong, D.R., Chen, T. and Zhang, J.R. (2022), "Vibration characteristics of channel steel-concrete composite girders: An experimental and numerical analysis", J. Low Freq. Noise V. A., 41(3), 1030-1043. https://10.1177/14613484221086373.