DOI QR코드

DOI QR Code

Optimum distribution of steel frame assembly for seismic retrofit of framed structures

  • Michael Adane (Department of Global Smart City, Sungkyunkwan University) ;
  • Seungho Chun (Department of Global Smart City, Sungkyunkwan University) ;
  • Jinkoo Kim (Department of Global Smart City, Sungkyunkwan University)
  • Received : 2022.04.17
  • Accepted : 2024.01.18
  • Published : 2024.02.10

Abstract

This research proposed a particle swarm optimization (PSO) based seismic retrofit design of moment frame structures using a steel frame assembly. Two full scale specimens of the steel frame assembly with different corner details were attached to one-story RC frames for seismic retrofit, and the lateral load resisting capacities of the retrofitted frames subjected to cyclic loads were compared with those of a bare RC frame. The open source software framework Opensees was used to develop an analytical model for validating the experimental results. The developed analytical model and the optimization scheme were applied to a case study structure for economic seismic retrofit design, and its seismic performance was assessed before and after the retrofit. The results show that the developed steel frame assembly was effective in increasing seismic load resisting capability of the structure, and the PSO algorithm could be applied as convenient optimization tool for seismic retrofit design of structures.

Keywords

Acknowledgement

This research was carried out by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006631).

References

  1. ACI (2011), "Building Code Requirements for Structural Concrete (ACI 318-11)", American Concrete Institute; Farmington Hills, MI, USA.
  2. Adane, M., Chun, S. and Kim, J. (2023), "Seismic retrofit of framed structures using a steel frame assembly", Steel Compos. Struct., 46(6), 857-865. https://doi.org/10.12989/scs.2023.46.6.857.
  3. American Society of Civil Engineers, Reston, Virginia, USA
  4. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W. J., Chiou, B.S.J. and Donahue, J.L. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193%2F070913EQS197M. https://doi.org/10.1193%2F070913EQS197M
  5. Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Hashemi, M.H. (2018), "Empirical evaluation of cyclic behavior of rotational friction dampers with different metal pads", Scientia Iranica, 25(6), 3021-3029. https://dx.doi.org/10.24200/sci.2017.4225.
  6. ASCE 41-13 (2013), Seismic Rehabilitation of Existing Buildings. 
  7. Aucamp, H. (2017), "The optimisation of web-tapered portal frame buildings", Stellenbosch: Stellenbosch University.
  8. Bahrani, M.K., Nooralizadeh, A., Usefi, N. and Zargaran, M. (2019), "Seismic evaluation and partial retrofitting of concrete bridge bents with defect details", Latin Amer. J. Solids Struct., 16. https://doi.org/10.1590/1679-78255158.
  9. Dereje, J.A., Eldin, M.N. and Kim, J. (2021), "Seismic retrofit of a soft first story structure using an optimally designed post-tensioned PC frame", Earthq. Struct., 20(6), 627-637. https://doi.org/10.12989/eas.2021.20.6.627.
  10. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct, 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  11. Fujita, K., Yamamoto, K. and Takewaki, I. (2010), "An evolutionary algorithm for optimal damper placement to minimize interstorey-drift transfer function in shear building", Earthq. Struct., 1(3), 289-306. https://doi.org/10.12989/eas.2010.1.3.289.
  12. Gholami, M., Zare, E., Azandariani, M.G. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  13. Gluck, N., Reinhorn, A.M., Gluck, J. and Levy, R. (1996), "Design of supplemental dampers for control of structures", J. Struct. Eng., 122(12), 1394-1399. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1394).
  14. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Construct. Steel Res., 191. https://doi.org/10.1016/j.jcsr.2022.107157. doi:10.1016/j.jcsr.2022.107157.
  15. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  16. Hasancebi, O.G.U.Z.H.A.N., C arbas, S., Dogan, E., Erdal, F.E.R. I.D.E. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006.
  17. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 4019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.
  18. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct, 37, 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
  19. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-international conference on neural networks. IEEE, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  20. Kim, J. and Bang, S. (2002), "Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures", Eng. Struct., 24(10), 1257-1269. https://doi.org/10.1016/S0141-0296(02)00046-9.
  21. Kim, J., Choi, H. and Chung, L. (2004), "Energy-based seismic design of structures with buckling-restrained braces", Steel Compos. Struct., 4(6), 437-452. https://doi.org/10.12989/scs.2004.4.6.437.
  22. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual. Pacific earthquake engineering research (PEER) center", 264(1), 137-158.
  23. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
  24. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  25. Nasab, M.S.E., Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on seismic retrofit of a RC frame using viscoelastic dampers", Structures, 34, 771-786. https://doi.org/10.1016/j.istruc.2021.08.044.
  26. Nour Eldin, M., Dereje, A.D. and Kim, J. (2020), "Seismic Retrofit of RC buildings using self-centering PC Frames with friction dampers", Eng. Struct., 208, 109925, https://doi.org/10.1016/j.engstruct.2019.109925.
  27. Noureldin, M., Adane, M. and Kim, J. (2021), 'Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events", Earthq. Struct., 21(3), 219-230. https://doi.org/10.12989/eas.2021.21.3.219.
  28. Oncu-Davas, S. and Alhan, C. (2019a), "Reliability of semi-active seismic isolation under near-fault earthquakes", Mech. Syst. Signal Pr., 114, 146-164. https://doi.org/10.1016/j.ymssp.2018.04.045.
  29. Oncu-Davas, S. and Alhan, C. (2019b), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.
  30. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  31. Pekelnicky, R. et al. (2012), 'ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings', Proceedings of the SEAOC, Santa Fe, New Mexico, September.
  32. Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013.
  33. Sahab, M.G., Toropov, V.V and Gandomi, A.H. (2013), "A review on traditional and modern structural optimization: problems and techniques", Metaheur. Appl. Struct. Infrastruct., 25-47. https://doi.org/10.1016/B978-0-12-398364-0.00002-4.
  34. Shayanfar, M.A. and Javidan, M.M. (2017), "Progressive collapse-resisting mechanisms and robustness of RC frame-shear wall structures", J. Perform. Constr. Fac., 31(5), 4017045. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001012.
  35. Standard, A.A.C.I. (2011), "Building code requirements for structural concrete (ACI 318-11)", American Concrete Institute.
  36. Wang, D., Tan, D. and Liu, L. (2018), "Particle swarm optimization algorithm: an overview", Soft Comput., 22(2), 387-408. https://doi.org/10.1007/s00500-016-2474-6.
  37. Xu, Z.-D., Ge, T. and Liu, J. (2020), "Experimental and theoretical study of high-energy dissipation-viscoelastic dampers based on acrylate-rubber matrix", J. Eng. Mech., 146(6), 4020057. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.
  38. Xu, Z.-D., Xu, F.-H. and Chen, X. (2016), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dyn., 83(3), 1341-1353. https://doi.org/10.1007/s11071-015-2407-4.
  39. Yang, X. and Xie, H.R. (2021), "Probabilistic effectiveness of visco-elastic dampers considering earthquake excitation uncertainty and ambient temperature fluctuation", Eng. Struct., 226, 111379. https://doi.org/10.1016/j.engstruct.2020.111379.
  40. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Constr. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.