DOI QR코드

DOI QR Code

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Jinpeng Wu (School of Civil and Transportation Engineering, Guangdong Univ. of Technology) ;
  • Bingxiong Xian (School of Civil and Transportation Engineering, Guangdong Univ. of Technology) ;
  • Guifeng Zhao (Guangdong Key Laboratory of Earthquake Engineering & Applied Technique) ;
  • Shu Fang (Guangdong Key Laboratory of Earthquake Engineering & Applied Technique) ;
  • Yuhong Ma (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Haibo Jiang (School of Civil and Transportation Engineering, Guangdong Univ. of Technology)
  • 투고 : 2023.07.23
  • 심사 : 2023.09.28
  • 발행 : 2024.02.10

초록

Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

키워드

참고문헌

  1. AASHTO (2014), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials; Washington, D.C., USA
  2. ACI 318-19 (2019), Building Code Requirements for Structural Concrete, American Concrete Institute; Farmington Hills, MI, USA
  3. ASTM A370-14 (2014), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, USA
  4. ASTM C1231/C1231M-15 (2015), Standard Practice for Use of Unbond Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA, USA
  5. ASTM C1437-15 (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA
  6. ASTM C29/C29M-16 (2016), Standard Test Method for Bulk Density and Voids in Aggregate, ASTM International, West Conshohocken, PA, USA
  7. ASTM C469/C469M-14 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA
  8. ASTM C496/C496M-11 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA
  9. Ataei, A., Zeynalian, M. and Yazdi, Y. (2019), "Cyclic behaviour of bolted shear connectors in steel-concrete composite beams", Eng. Struct., 198, 109455. https://doi.org/10.1016/j.engstruct.2019.109455.
  10. Buttry, K. (1965), "Behavior of stud shear connectors in lightweight and normal-weight concrete", Report No. 68-6; Missouri Cooperative Highway Research Program, Missouri State Highway Department and University of Missouri-Columbia, Missouri, USA.
  11. Cao, J.H., Shao, X.D., Deng, L. and Gan, Y.D. (2017), "Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer", J. Bridge Eng., 22(5), 4017005. https://doi.org/10.1061/(ASCE)BE.1943-592.0001031.
  12. Cao, X.Y., Feng, D.C., Wang, C.L., Shen, D.J. and Wu, G. (2023), "A stochastic CSM-based displacement-oriented design strategy for the novel precast SRC-UHPC composite braced-frame in the externally attached seismic retrofitting", Compos. Struct., 321, 117308. https://doi.org/10.1016/j.compstruct.2023.117308.
  13. Chen, B.C., Liu, A.R., Zhang, J.P., Zhang, F. and Bradford, M.A. (2022), "Behavior of T-shaped embedded-nut bolted shear connectors in prefabricated steel-concrete composite beams", Eng. Struct., 272, 114983. https://doi.org/10.1016/j.engstruct.2022.114983.
  14. CSA S6-14 (2014), Canadian highway bridge design code, Canadian Standards Association (CSA), Mississauga, Canada
  15. Eurocode 3 (2005), Design of Steel Structures. Part 1-8: Design of Joints, European Committee for Standardization, Brussels, Belgium.
  16. Eurocode 4 (2004), Design of Composite Steel and Concrete Structure. Part 2: General Rules for Bridge, European Committee for Standardization; Brussels, Belgium.
  17. Fang, S., Zhang, S.F., Cao, Z.P., Zhao, G.F., Fang, Z.C., Ma, Y.H. and Jiang, H.B (2023a), "Effects of stud aspect ratio and cover thickness on push-out performance of thin full-depth precast UHPC slabs with grouped short studs: Experimental evaluation and design considerations", J. Build. Eng., 67, 105910. https://doi.org/10.1016/j.jobe.2023.105910.
  18. Fang, Z.C., Fang, H.Z., Huang, J.X., Jiang, H.B. and Chen, G.F. (2022a), "Static behavior of grouped stud shear connectors in steel-precast UHPC composite structures containing thin fulldepth slabs", Eng. Struct., 252, 113484. https://doi.org/10.1016/j.engstruct.2021.113484.
  19. Fang, Z.C., Fang, H.Z., Li, P.J., Jiang, H.B. and Chen, G.F. (2022b), "Interfacial shear and flexural performances of steel-precast UHPC composite beams: Full-depth slabs with studs vs. demountable slabs with bolts", Eng. Struct., 260, 114230. https://doi.org/10.1016/j.engstruct.2022.114230.
  20. Fang, Z.C., Hu, L.K., Jiang, H.B., Fang, S., Zhao, G.F. and Jiang, H.B (2023b), "Shear performance of high-strength friction-grip bolted shear connector in prefabricated steel-UHPC composite beams: Finite element modelling and parametric study", Case Stud. Constr. Mat., 18, e01860. https://doi.org/10.1016/j.cscm.2023.e01860.
  21. Fang, Z.C., Jiang, H.B., Chen, G.F., Dong, X.T. and Shao, T.F. (2020), "Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams", Steel Compos. Struct., 34(6), 837-851. https://doi.org/10.12989/scs.2020.34.6.837.
  22. Fang, Z.C., Liang, W.B., Fang, H.Z., Jiang, H.B. and Wang, S.D. (2021), "Experimental investigation on shear behavior of highstrength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading", Eng. Struct., 244, 112777. https://doi.org/10.1016/j.engstruct.2021.112777.
  23. Fang, Z.C., Zhang, S.F., Wu, J.P., Ma, Y.H., Fang, S., Zhao, G.F. and Jiang, H.B (2023c), "Experimental and numerical study on shear performance of grouped bolt-UHPC pocket connections under static loading", J. Build. Eng., 76, 106966. https://doi.org/10.1016/j.jobe.2023.106966.
  24. He, S.H., Yang, G., Jiang, Z., Wang, Q. and Dong, Y. (2023), "Effective width evaluation for HSS-UHPC composite beams with perfobond strip connectors", Eng. Struct., 295, 116828. https://doi.org/10.1016/j.engstruct.2023.116828.
  25. Jiang, H.B., Fang, H.Z., Wu, J.P., Fang, Z.C., Fang, S. and Chen, G.F. (2022), "Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction", Steel Compos. Struct., 45(6), 797-818. https://doi.org/10.12989/scs.2022.45.6.797.
  26. Kwon, G., Engelhardt, M.D. and Klingner, R.E. (2010), "Behavior of post-installed shear connectors under static and fatigue loading", Steel Construct., 66(4), 532-541. https://doi.org/10.1016/j.jcsr.2009.09.012.
  27. Lin, J.X., Luo, R.H., Su, J.Y., Guo, Y.C. and Chen, W.S. (2024), "Coarse synthetic fibers (PP and POM) as a replacement to steel fibers in UHPC: Tensile behavior, environmental and economic assessment", Constr. Build. Mater., 412, 134654. https://doi.org/10.1016/j.conbuildmat.2023.134654.
  28. Liu, X.P., Bradford, M.A. and Lee, M.S.S. (2015), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Struct. Eng., 141(6), 4014149. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001090
  29. Luo, Y.B., Hoki, K., Hayashi, K. and Nakashima, M. (2016), "Behaviour and strength of headed stud-SFRCC shear connection. I: Experimental study", J. Struct. Eng., 142(2), 4015112. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001363.
  30. Ollgaard, J., Slutter, R. and Fisher, J. (1971), "Shear strength of stub connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-66. https://preserve.lib.lehigh.edu/islandora/object/preserve%3Abp-3378933. https://doi.org/10.62913/engj.v8i2.160
  31. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budfevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  32. Semendary, A.A., Stefaniuk, H.L., Yamout, D. and Svecova, D. (2022), "Static performance of stud shear connectors and UHPC in deck-to-girder composite connection", Eng. Struct., 255, 103917. https://doi.org/10.1016/j.engstruct.2022.113917.
  33. Wang, J.Q., Qi, J.N., Tong, T., Xu, Q.Z. and Xiu, H.L. (2019), "Static behaviour of large stud shear connectors in steel-UHPC composite structures", Eng. Struct., 178, 534-542. https://doi.org/10.1016/j.engstruct.2018.07.058.
  34. Wang, J.Q., Xu, Q.Z., Yao, Y.M., Qi, J.N. and Xiu, H.L. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.
  35. Wang, J.Y., Guo, J.Y., Jia, L.J., Chen, S.M. and Dong, Y. (2017), "Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures", Compos. Struct., 170, 69-79. https://doi.org/10.1016/j.compstruct.2017.03.004.
  36. Xing, Y., Liu, Y.B., Shi, C.J., Wang, Z.P., Guo, Q. and Jiao, J.F. (2022), "Static behavior of high strength friction-grip bolt shear connectors in composite beams", Steel Compos. Struct., 42(3), 407-426. https://doi.org/10.12989/scs.2022.42.3.407.
  37. Xiong, Z., Wei, W., He, S.H., Liu, F., Luo H.W. and Li, L.J. (2021), "Dynamic bond behaviour of fibre-wrapped basalt fibrereinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests", Constr. Build. Mater., 276, 122195. https://doi.org/10.1016/j.conbuildmat.2020.122195.
  38. Yang, F., Liu, Y.Q., Jiang, Z.B. and Xin, H.H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct., 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005.
  39. Yang, T., Liu, S.Y., Qin, B.X. and Liu, Y.Q. (2020), "Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams", J. Constr. Steel Res., 173, 106260. https://doi.org/10.1016/j.jcsr.2020.106260.
  40. Zhang, Y.J., Chen, B.C., Liu, A.R., Pi, Y.L., Zhang, J.P., Wang, Y. and Zhong, L.C. (2019), "Experimental study on shear behavior of high strength bolt connection in prefabricated steelconcrete composite beam", Compos. Part B-Eng., 159, 481-489. https://doi.org/10.1016/j.compositesb.2018.10.007.
  41. Zhang, Y.J., Liu, A.R., Chen, B.C., Zhang, J.P., Pi, Y.L. and Bradford, M.A. (2020), "Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete", Eng. Struct., 215, 110707. https://doi.org/10.1016/j.engstruct.2020.110707.
  42. Zhen, H., Xiong, Z., Song, Y.Y., Li, L.J., Qiu, Y., Zou X.Z., Chen, B., Chen, D.E., Liu, F. and Ji, Y.D (2024), "Early mechanical performance of glass fibre-reinforced manufactured sand concrete", J. Build. Eng., 108440. https://doi.org/10.1016/j.jobe.2024.108440.
  43. Zou, Y., Zheng, K.D., Zhou, Z.X., Zhang, Z.Y., Guo, J.C. and Jiang, J.L. (2023), "Experimental study on flexural behavior of hollow steel-UHPC composite bridge deck", Eng. Struct., 274, 115087. https://doi.org/10.1016/j.engstruct.2020.110707.