DOI QR코드

DOI QR Code

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong (Department of Civil Engineering, Anhui University of Technology, China; Institute for Sustainable Built Environment, Heriot-Watt University) ;
  • Bo Yang (Department of Civil Engineering, Anhui University of Technology) ;
  • Cuiqiang Shi (Department of Civil Engineering, Anhui University of Technology) ;
  • Xinjie Huang (Department of Civil Engineering, Anhui University of Technology) ;
  • George Vasdravellis (Institute for Sustainable Built Environment, Heriot-Watt University) ;
  • Quang-Viet Vu (Laboratory for Computational Civil Engineering, Institute for Computational Science and Artificial Intelligence, Van Lang University, Faculty of Civil Engineering, School of Technology, Van Lang University) ;
  • Seung-Eock Kim (Department of Civil and Environmental Engineering, Sejong University)
  • 투고 : 2023.08.17
  • 심사 : 2023.12.06
  • 발행 : 2024.02.10

초록

Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

키워드

과제정보

This work was funded by Horizon 2020 - Marie Sklodowska - Curie Individual Fellowship of European Commission (No. SS-DSC 01107320), UKRI EPSRC Fellowship, UK (No. EP/Y020278/1), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province, China (No. gxyq2022015), Natural Science Foundation of Anhui Province, China (No. 1908085ME171), and the Natural Science Foundation of the Anhui Higher Education Institutions, China (No.2022AH050288). The authors are graceful to the technicians at Technology Center of Ma'anshan Iron and Steel Co. Ltd.

참고문헌

  1. Ala-Outinen, T. (1996), Fire Resistance of Austenitic Stainless Steels Polarit 725 (EN 1.4301) and Polarit 761 (EN 1.4571). Technical Research Centre of Finland, Finland.
  2. Ala-Outinen, T. and Oksanen, T. (1997), Stainless Steel Compression Members Exposed to Fire. VTT Technical Research Centre of Finland, Finland.
  3. Baddoo, N.R. (2008), "Stainless steel in construction: A review of research, applications, challenges and opportunities", J. Construct. Steel Res., 64, 1199-1206. https://doi.org/10.1016/j.jcsr.2008.07.011.
  4. Cai, Y. and Young, B. (2014), "Structural behavior of cold-formed stainless steel bolted connections", Thin-Wall. Struct., 83, 147-156. https://doi.org/10.1016/j.tws.2014.01.014.
  5. Cai, Y. and Young, B. (2015), "High temperature tests of cold-formed stainless steel double shear bolted connections", J. Construct. Steel Res., 104, 49-63. https://doi.org/10.1016/j.jcsr.2014.09.015.
  6. Cai, Y. and Young, B. (2018), "Fire resistance of stainless steel single shear bolted connections", Thin-Wall. Struct., 130, 332-346. https://doi.org/10.1016/j.tws.2018.05.004.
  7. Cai, Y. and Young, B. (2019), "Structural behaviour of cold-formed stainless steel bolted connections at post-fire condition", J. Construct. Steel Res., 152, 312-321. https://doi.org/10.1016/j.jcsr.2018.03.024.
  8. CECS 252 2009 (2009), China Engineering Construction Standardization Association. China Engineering Construction Standardization Association Standard-Standard for building structural assessment after fire. China Planning Publishing House, Beijing, China.
  9. CEN. BS EN ISO 3506-1 (1998), Mechanical Properties of Corrosion-Resistant Stainless Steel Fasteners-Part 1: Bolts, Screws and Studs, European Committee Of Standardization, Brussels, Belgium.
  10. CEN. BS EN ISO 6892-1 (2016), Metallic Materials-Tensile Testing Part 1: Method of Test at Room Temperature, European Committee for Standardization, Brussels, Belgium.
  11. Chang, K.H., Lee, K.L. and Pan, W.F. (2010), "Buckling failure of 310 stainless steel tubes with different diameter-to-thickness ratios under cyclic bending", Steel Compos. Struct., 10(3), 245-260. https://doi.org/10.12989/scs.2010.10.3.245.
  12. Chen, J. and Young, B> (2006), "Stress-strain curves for stainless steel at elevated temperatures", Eng. Struct., 28, 229-239. https://doi.org/10.1016/j.engstruct.2005.07.005.
  13. EN 1993-1-2 (2005), Eurocode 3: Design of Steel Structures-Part 1.2: General Rules-Structural Fire Design. CEN.
  14. Fan, S., Dong, D., Zhu, T., Wang, J. and Hou, W. (2022), "Experimental study on stainless steel C-columns with local-global interaction buckling", J. Construct. Steel Res., 198, 107516. https://doi.org/10.1016/j.jcsr.2022.107516.
  15. Haiko, O., Javaheri, V., Valtonen K., Kaijalainen, A., Hannula, J. and Komi, J. (2020), "Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels", Wear, 454, 203336. https://doi.org/10.1016/j.wear.2020.203336.
  16. Hsu, C.M., Chang, K.H., Sheu, S.R. and Pan, W.F. (2005) "Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending", Steel Compos. Struct., 5(5), 359-374. https://doi.org/10.12989/scs.2005.5.5.359.
  17. Hu, Y., Shen, L., Nie, S., Yang, B. and Sha, W. (2016), "FE simulation and experimental tests of high-strength structural bolts under tension", J. Construct. Steel Res., 126, 174-186. https://doi.org/10.1016/j.jcsr.2016.07.021.
  18. Hu, Y., Tang, S.L., George, A.K., Tao, Z., Wang, X.Q. and Thai, H.T. (2019), "Behaviour of stainless steel bolts after exposure to elevated temperatures", J. Construct. Steel Res., 157, 371-385. https://doi.org/10.1016/j.jcsr.2019.02.021.
  19. Hu, Y., Yang, C.B., Teh, L.H. and Yang, Y.B. (2018), "Reduction factors for stainless steel bolts at elevated temperatures", J. Construct. Steel Res., 148, 198-205. https://doi.org/10.1016/j.jcsr.2018.05.018.
  20. Hua, J., Xue, X., Huang, Q., Shi, Y. and Deng, W. (2022), "Post-fire performance of high-strength steel plate girders developing post-buckling capacity", J. Build. Eng., 52, 104442. https://doi.org/10.1016/j.jobe.2022.104442.
  21. Huang, Y. and Young, B. (2017), "Post-fire behaviour of ferritic stainless steel material", Construct. Build. Mater., 157, 654-667. https://doi.org/10.1016/j.conbuildmat.2017.09.082.
  22. Huang, Y., Chen, J., He, Y. and Young, B. (2021), "Design of cold-formed stainless steel RHS and SHS beam-columns at elevated temperatures", Thin-Wall. Struct., 165, 107960. https://doi.org/10.1016/j.tws.2021.107960.
  23. Jiang, K. and Zhao O. (2023), "Ferritic stainless steel thin sheet bolted connections failing by bearing-curling interaction: Testing, modelling and design", Eng. Struct., 283, 115919. https://doi.org/10.1016/j.engstruct.2023.115919.
  24. Kiymaz, G. (2009), "Investigations on the bearing strength of stainless steel bolted plates under in-plane tension", Steel Compos. Struct., 9(2,: 173-189. https://doi.org/10.12989/scs.2009.9.2.173.
  25. Kiymaz, G. and Seckin, E. (2014), "Behavior and design of stainless steel tubular member welded end connections", Steel Compos. Struct., 17(3), 253-269. https://doi.org/10.12989/scs.2014.17.3.253.
  26. Kodur, V., Kand, S. and Khaliq, W. (2012), "Effect of temperature on thermal and mechanical properties of steel bolts", J. Mater. Civil Eng., 67, 765-774. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000445.
  27. Kodur, V., Yahyai, M., Rezaeian, A., Eslami, M. and Poormohamadi, A. (2017), "Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle", J. Construct. Steel Res., 131, 122-131. https://doi.org/10.1016/j.jcsr.2017.01.007.
  28. Kong, Z., Jin, Y., Yang, F., Vu, Q.V., Truong, V.H., Yu, B. and Kim, S.E. (2021), "Numerical simulation for structural behaviour of stainless steel web cleat connections.", J. Construct. Steel Res., 183, 106706. https://doi.org/10.1016/j.jcsr.2021.106706.
  29. Lange, J. and Gonzalez, F. (2012), "Behavior of high-strength grade 10.9 bolts under fire conditions", Struct. Eng. Int., 22, 470-475. https://doi.org/10.2749/101686612X13363929517451.
  30. Lee, K.L and Pan, W.F. (2002), "Pure bending creep of SUS 304 stainless steel tubes", Steel Compos. Struct., 2(6), 461-474. https://doi.org/10.12989/scs.2002.2.6.461.
  31. Li, D.Y., Lou, J.X. and Wang, X.Y. (2012), "Analysis of carbon migration phenomenon in the transition zone of stainless steel and heat-resistant steel welding", J. Shenyang Univ. Technol., 34, 491-495. (In Chinese)
  32. Li, S., Jiang, K. and Zhao, O. (2023a), "Press-braked ferritic stainless steel slender channel section beam-columns: Tests, simulations and design", Thin-Wall. Struct., 183, 110302. https://doi.org/10.1016/j.tws.2022.110302.
  33. Li, S., Su, A. and Zhao, O. (2023b), "Structural behaviour of press-braked austenitic stainless steel slender channel section beam-columns", Eng. Struct., 281, 115818. https://doi.org/10.1016/j.engstruct.2023.115818.
  34. Mamazizi, A., Ahmadi, A., Khayati, S. and Soltanabadi, R. (2023), "Experimental study on post-fire mechanical properties of Grade 12.9 high-strength bolts", Construct. Build. Mater., 383, 131236. https://doi.org/10.1016/j.conbuildmat.2023.131236.
  35. Martins, A.D., Camotim, D., Goncalves, R. and Dinis, P.B. (2021), "Numerical simulation and design of stainless steel columns under elevated temperatures", ce/papers, 4(2-4), 1465-1474. https://doi.org/10.1002/cepa.1444.
  36. Martins, A.D., Goncalves, R. and Camotim, D. (2021), "Numerical simulation and design of stainless steel columns under fire conditions", Eng. Struct., 229, 111628. https://doi.org/10.1016/j.engstruct.2020.111628.
  37. Moreno, E.N. and Baddoo, N.R. (2007), Stainless Steel in Fire. The Steel Construction Institute, Silwood Park, Ascot, United Kingdom.
  38. Pang, X.P., Hu, Y., Tang, S.L., Xiang, Z., Wu, G., Xu, T. and Wang, X.Q. (2019), "Physical properties of high-strength bolt materials at elevated temperatures", Results Physics, 13, 102156. https://doi.org/10.1016/j.rinp.2019.102156.
  39. Rossi, B. (2014), "Discussion on the use of stainless steel in constructions in view of sustainability", Thin-Wall. Struct., 83, 182-189. https://doi.org/10.1016/j.tws.2014.01.021.
  40. Sakumoto, Y., Keira, K., Furumura, F. and Ave, T. (1993), "Tests of fire-resistant bolts and joints", J. Struct. Eng., 119(11), 3131-3150. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3131).
  41. Sakumoto, Y., Nakazato, T. amd Matsuzaki, A. (1996), "High-temperature properties of stainless steel for building structures", J. Struct. Eng., 122, 399-406. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(399).
  42. Song, Y., Wang, J., Uy, B. and Li, D. (2020), "Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear", J. Construct. Steel Res., 166, 105916. https://doi.org/10.1016/j.jcsr.2019.105916.
  43. Song, Y., Wang, J., Uy, B. and Li, D. (2020), "Stainless steel bolts subjected to combined tension and shear: Behaviour and design", J. Construct. Steel Res., 170, 106122. https://doi.org/10.1016/j.jcsr.2020.106122.
  44. Song, Y., Yam, M.C.H. and Wang, J. (2023), "Enhanced progressive collapse resistance of bolted beam-to-column connections with ductile stainless steel components", Eng. Struct., 275, 115337. https://doi.org/10.1016/j.engstruct.2022.115337.
  45. Stranghoner, N. and Abraham, C. (2021), "Shear resistance of austenitic and duplex stainless steel bolts", J. Construct. Steel Res., 184, 106807. https://doi.org/10.1016/j.jcsr.2021.106807.
  46. Stranghoner, N. and Abraham, C. (2022), "Tension and interaction resistance of austenitic and duplex stainless steel bolts", J. Construct. Steel Res., 198, 107536. https://doi.org/10.1016/j.jcsr.2022.107536.
  47. Tang, S.L. (2019), "The investigation on the properties and stress-strain model of high-strength bolts and stainless steel bolts during and after fire", Chongqing Univ., (In Chinese)
  48. Tao, Z., Wang, X.O. and Uy. B. (2013), "Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures", J. Mater. Civil Eng., 25, 1306-1316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676.
  49. Tao, Z., Wang, X.Q., Hassan, M.K., Song, T.Y. and Xie, L.A. (2019), "Behaviour of three types of stainless steel after exposure to elevated temperatures", J. Construct. Steel Res., 152, 296-311. https://doi.org/10.1016/j.jcsr.2018.02.020.
  50. Tianxiong, Z., Yidu, B., Yuanqing, W., Zhihua, C., Wei, H. and Yuekun, H. (2023), "Experimental study on mechanical properties and tightening method of stainless steel high-strength bolts", Eng. Struct., 290, 116176. https://doi.org/10.1016/j.engstruct.2023.116176.
  51. Voisin, T., Forien, J.B., Perron, A., Aubry, S., Bertin, N., Samanta, A. and Wang, Y.M. (2021), "New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion", Acta Materialia, 203, 116476. https://doi.org/10.1016/j.actamat.2020.11.018.
  52. Wang, W., Liu, T. and Liu, J. (2015), "Experimental study on post-fire mechanical properties of high strength Q460 steel", J. Construct. Steel Res., 114, 100-109. https://doi.org/10.1016/j.jcsr.2015.07.019.
  53. Wang, X.Q., Tao, Z., Song, T.Y. and Han, L.H. (2014), "Stress-strain model of austenitic stainless steel after exposure to elevated temperatures", J. Construct. Steel Res., 99, 129-139. https://doi.org/10.1016/j.jcsr.2014.04.020.
  54. Xing, Z., Jiang, M., San, B. and Wu, K. (2023), "Experimental investigation of austenitic stainless steel I-section stub columns at elevated temperatures", Thin-Wall. Struct., 184, 110502. https://doi.org/10.1016/j.tws.2022.110502.
  55. Yousefi, A.M., Samali, B., Hajirasouliha, I., Yu, Y. and Clifton, G.C. (2022), "Unified design equations for web crippling failure of cold-formed ferritic stainless steel unlipped channel-sections with web holes", J. Buil. Eng., 45, 103685. https://doi.org/10.1016/j.jobe.2021.103685.
  56. Zhang, C., Wang, R. and Zhu, L. (2021), "Mechanical properties of Q345 structural steel after artificial cooling from elevated temperatures", J. Construct. Steel Res., 176, 106432. https://doi.org/10.1016/j.jcsr.2020.106432.
  57. Zheng, B., Liao, X., Wu, B. and Shu, G. (2023), "Crippling of cold-formed stainless steel circular tubular members under concentrated bearing loads", Thin-Wall. Struct., 182, 110215. https://doi.org/10.1016/j.tws.2022.110215.
  58. Zheng, B., Zhang, S., Yang, S., Shu, G. and Dong, S. (2023), "S600E high-strength stainless steel welded section columns: Bearing capacity test and design method", Thin-Wall. Struct., 183, 110423. https://doi.org/10.1016/j.tws.2022.110423.