참고문헌
- Arena, A., Talo, M., Snyder, M.P. and Lacarbonara, W. (2020), "Enhancing flutter stability in nanocomposite thin panels by harnessing CNT/polymer dissipation", Mech. Res. Commun., 104, 103495. https://doi.org/10.1016/j.mechrescom.2020.103495.
- Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
- Azandariani, M.G., Gholami, M., Nikzad, A., Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
- Bahrami, M. and Hatami, S. (2016), "Free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method", J. Solid Mech., 8(4), 895-915.
- Bahrami, M. and Hatami, S. (2017), "Spectral finite element method for free vibration of axially moving plates based on first-order shear deformation theory", J. Solid Mech., 9(3), 490-507.
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D. won, Habibi, M. and Safarpour, M. (2022), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Mach., 50(4), 1137-1160. https://doi.org/10.1080/15397734.2020.1744005.
- Daraei, B. and Hatami, S. (2016), "Free vibration analysis of variable stiffness composite laminates with flat and folded shapes", J. Solid Mech., 8(3), 662-678.
- Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Adv. Nano Res., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113.
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electroviscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
- Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.
- Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018), "Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field", Struct. Eng. Mech., 67(1), 21-31. https://doi.org/10.12989/sem.2018.67.1.021.
- Gao, Y., Xiao, W.S. and Zhu, H. (2019a), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
- Gao, Y., Xiao, W. and Zhu, H. (2019b), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669. https://doi.org/10.12989/SEM.2019.71.6.669.
- Garcia-Macias, E., Castro-Triguero, R., Saavedra Flores, E.I., Friswell, M.I. and Gallego, R. (2016), "Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates", Compos. Struct., 140, 473-490. https://doi.org/10.1016/j.compstruct.2015.12.044.
- Gorji Azandariani, M., Gholami, M., Vaziri, E. and Nikzad, A. (2021), "Nonlinear static analysis of a bi-directional functionally graded microbeam based on a nonlinear elastic foundation using modified couple stress theory", Arab. J. Sci. Eng., 1-11. https://doi.org/10.1007/s13369-021-06053-0.
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
- Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42(3-4), 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063.
- Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., 66(6), 737-748. https://doi.org/10.12989/sem.2018.66.6.737.
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Keshavarzi, R., Hatami, S. and Hashemi, S.H. (2021), "Buckling analysis of variable stiffness composite laminates by semianalytical finite strip method", Comp. Meth. Eng., 39(2), 73-95. https://doi.org/10.47176/jcme.39.2.4912.
- Kiani, Y. (2017), "Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers", Meccanica, 52(6), 1353-1367. https://doi.org/10.1007/s11012-016-0466-3.
- Luat, D.T., Thom, D. Van, Thanh, T.T., Minh, P. Van, Ke, T. Van, and Vinh, P. Van. (2021), "Mechanical analysis of bifunctionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 055. https://doi.org/10.12989/ANR.2021.11.1.055.
- Mahdavinia, H., Hatami, S. and Niknezhad, A. (2020), "Resistance of singly-curved sandwich shells with metal microlattice core under transverse loading", J. Sci. Tech. Comp., 7(2), 897-906. https://doi.org/10.22068/jstc.2020.117153.1606.
- Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067.
- Mehrabadi, S.J., Sobhaniaragh, B. and Pourdonya, V. (2013), "Free vibration analysis of nanocomposite plates reinforced by graded carbon nanotubes based on first-order shear deformation plate theory", Adv. Appl. Math. Mech., 5(1), 90-112. https://doi.org/10.4208/aamm.11-m11182.
- Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7(1), 511-523. https://doi.org/10.3762/bjnano.7.45.
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
- Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton,
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9.
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., Wiley, 23(1-4), 184-191. https://doi.org/10.1002/sapm1944231184.
- Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Prog. Polym. Sci., https://doi.org/10.1016/j.progpolymsci.2010.03.002.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Wang, J.F., Cao, S.H. and Zhang, W. (2021), "Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate", Eur. J. Mech. A/Solids, 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
- Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025.
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotubereinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
- Zarei, M.J., Hatami, S. and Gholami, M. (2022), "Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression", Steel Compos. Struct., 44(4), 519-529. https://doi.org/10.12989/scs.2022.44.4.519.
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
- Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019.
- Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.