DOI QR코드

DOI QR Code

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Received : 2022.08.05
  • Accepted : 2023.09.25
  • Published : 2024.01.25

Abstract

This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

Keywords

References

  1. Arena, A., Talo, M., Snyder, M.P. and Lacarbonara, W. (2020), "Enhancing flutter stability in nanocomposite thin panels by harnessing CNT/polymer dissipation", Mech. Res. Commun., 104, 103495. https://doi.org/10.1016/j.mechrescom.2020.103495.
  2. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
  3. Azandariani, M.G., Gholami, M., Nikzad, A., Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
  4. Bahrami, M. and Hatami, S. (2016), "Free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method", J. Solid Mech., 8(4), 895-915.
  5. Bahrami, M. and Hatami, S. (2017), "Spectral finite element method for free vibration of axially moving plates based on first-order shear deformation theory", J. Solid Mech., 9(3), 490-507.
  6. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  7. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D. won, Habibi, M. and Safarpour, M. (2022), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Mach., 50(4), 1137-1160. https://doi.org/10.1080/15397734.2020.1744005.
  8. Daraei, B. and Hatami, S. (2016), "Free vibration analysis of variable stiffness composite laminates with flat and folded shapes", J. Solid Mech., 8(3), 662-678.
  9. Ebrahimi, F. and Fardshad, R.E. (2018), "Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory", Adv. Nano Res., 6(2), 113-133. https://doi.org/10.12989/anr.2018.6.2.113.
  10. Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electroviscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
  11. Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.
  12. Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018), "Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field", Struct. Eng. Mech., 67(1), 21-31. https://doi.org/10.12989/sem.2018.67.1.021.
  13. Gao, Y., Xiao, W.S. and Zhu, H. (2019a), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
  14. Gao, Y., Xiao, W. and Zhu, H. (2019b), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669. https://doi.org/10.12989/SEM.2019.71.6.669.
  15. Garcia-Macias, E., Castro-Triguero, R., Saavedra Flores, E.I., Friswell, M.I. and Gallego, R. (2016), "Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates", Compos. Struct., 140, 473-490. https://doi.org/10.1016/j.compstruct.2015.12.044.
  16. Gorji Azandariani, M., Gholami, M., Vaziri, E. and Nikzad, A. (2021), "Nonlinear static analysis of a bi-directional functionally graded microbeam based on a nonlinear elastic foundation using modified couple stress theory", Arab. J. Sci. Eng., 1-11. https://doi.org/10.1007/s13369-021-06053-0.
  17. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  18. Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42(3-4), 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063.
  19. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., 66(6), 737-748. https://doi.org/10.12989/sem.2018.66.6.737.
  20. Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  21. Keshavarzi, R., Hatami, S. and Hashemi, S.H. (2021), "Buckling analysis of variable stiffness composite laminates by semianalytical finite strip method", Comp. Meth. Eng., 39(2), 73-95. https://doi.org/10.47176/jcme.39.2.4912.
  22. Kiani, Y. (2017), "Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers", Meccanica, 52(6), 1353-1367. https://doi.org/10.1007/s11012-016-0466-3.
  23. Luat, D.T., Thom, D. Van, Thanh, T.T., Minh, P. Van, Ke, T. Van, and Vinh, P. Van. (2021), "Mechanical analysis of bifunctionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 055. https://doi.org/10.12989/ANR.2021.11.1.055.
  24. Mahdavinia, H., Hatami, S. and Niknezhad, A. (2020), "Resistance of singly-curved sandwich shells with metal microlattice core under transverse loading", J. Sci. Tech. Comp., 7(2), 897-906. https://doi.org/10.22068/jstc.2020.117153.1606.
  25. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067.
  26. Mehrabadi, S.J., Sobhaniaragh, B. and Pourdonya, V. (2013), "Free vibration analysis of nanocomposite plates reinforced by graded carbon nanotubes based on first-order shear deformation plate theory", Adv. Appl. Math. Mech., 5(1), 90-112. https://doi.org/10.4208/aamm.11-m11182.
  27. Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7(1), 511-523. https://doi.org/10.3762/bjnano.7.45.
  28. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.
  29. Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton,
  30. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9.
  31. Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., Wiley, 23(1-4), 184-191. https://doi.org/10.1002/sapm1944231184.
  32. Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Prog. Polym. Sci., https://doi.org/10.1016/j.progpolymsci.2010.03.002.
  33. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  34. Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4.
  35. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  36. Wang, J.F., Cao, S.H. and Zhang, W. (2021), "Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate", Eur. J. Mech. A/Solids, 85, 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
  37. Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025.
  38. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotubereinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  39. Zarei, M.J., Hatami, S. and Gholami, M. (2022), "Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression", Steel Compos. Struct., 44(4), 519-529. https://doi.org/10.12989/scs.2022.44.4.519.
  40. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
  41. Zhang, L.W., Zhang, Y., Zou, G.L. and Liew, K.M. (2016), "Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method", Compos. Struct., 149, 247-260. https://doi.org/10.1016/j.compstruct.2016.04.019.
  42. Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.
  43. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.