References
- Abbas, I. A. (2014), "Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties", Comput. Mathem. Appl., 68(12), 2036-2056. https://doi.org/10.1016/j.camwa.2014.09.016.
- Abo-Dahab, S.M. (2014), "Green Lindsay model on propagation of surface waves in magneto-thermoelastic materials with voids and initial stress", J. Comput. Theoretic. Nanosci., 11(3), 763-771. https://doi.org/10.1166/jctn.2014.3425.
- Abro, K.A. and Gomez-Aguilar, J.F. (2020), "Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6655.
- Abro, K.A., Khan, I. and Gomez-Aguilar, J.F. (2018), "A mathematical analysis of a circular pipe in rate type fluid via Hankel transform", Eur. Phys. J. Plus, 133, 397.
- Abro, K.A., Khan, I. and Gomez-Aguilar, J.F. (2019), "Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique", J. Braz. Soc. Mech. Sci. Eng.,41(4), 174.
- Abro, K.A., Khan, I. and Gomez-Aguilar, J.F. (2021), "Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles", J. Thermal Anal. Calorimetry,143, 3633-3642. https://doi.org/10.1007/s10973-019-08992-1
- Althobaiti, S., Mubaraki, A., Nuruddeen, R.I. and Gomez-Aguilar, J.F. (2022), "Wave propagation in an elastic coaxial hollow cylinder when exposed to thermal heating and external load", Results Phys., 38, 1-11. https://doi.org/10.1016/j.rinp.2022.105582
- Biswas, S. (2019), "Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity", Mech. Based Des. Struct. Machines, 47(4), 430-452. https://doi.org/10.1080/15397734.2018.1557528.
- Biswas, S. (2020a), "Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space", Acta Mechanica, 231(10), 4129-4144. https://doi.org/10.1007/s00707-020-02751-2.
- Biswas, S. (2020b), "Surface waves in porous nonlocal thermoelastic orthotropic medium", Acta Mechanica, 231(7), 2741-2760. https://doi.org/10.1007/s00707-020-02670-2.
- Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase lags", Struct. Eng. Mech., 80(3), 265-274.
- Biswas, S. and Mahato, C.S. (2022), "Eigenvalue approach to study Rayleigh waves in nonlocal orthotropic layer lying over nonlocal orthotropic half-space with dual-phase-lag model", J. Thermal Stresses, 45(12), 937-959. https://doi.org/10.1080/01495739.2022.2075503
- Biswas, S. and Mukhopadhyay, B. (2018), "Eigenfunction expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase lags", Waves Random Complex Media, 29(4), 722-742. https://doi.org/10.1080/17455030.2018.1470355.
- Bucur, A. (2016), "Rayleigh surface waves problem in linear thermoviscoelasticity with voids", Acta Mechanica, 227, 1199-1212. https://doi.org/10.1007/s00707-015-1527-8
- Bucur, A.V., Passarella, F. and Tibullo, V. (2013), "Rayleigh surface waves in the theory of thermoelastic materials with voids", Meccanica, 49(9), 2069-2078. https://doi.org/10.1007/s11012-013-9850-4
- Chakraborty, S. (2017), "Eigenvalue approach to generalized thermoelastic interactions in an unbounded body with circular cylindrical cavity without energy dissipation", Int. J. Appl. Mech. Eng., 22(4), 811-825. https://doi.org/10.1515/ijame-2017-0053.
- Chandrasekharaih, D.S. (1986), "Thermoelasticity with second sound: A review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705
- Chandrasekharaih, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
- Chirita, S. and Arusoaie, A. (2021), "Thermoelastic waves in double porosity materials", Europ. J. Mech.- A/Solids, 86, 104177.
- Chirita, S. and Ghiba, I.D. (2010), "Strong ellipticity and progressive waves in elastic materials with voids", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114), 439-458. https://doi.org/10.1098/rspa.2009.0360.
- Cowin, S.C., and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elasticity, 13(2), 125-147. https://doi.org/10.1007/bf00041230.
- Das, N.C., Das, S.N. and Das, B. (1983), "Eigenvalue approach to thermoelasticity", J. Thermal Stresses, 6(1), 35-43. https://doi.org/10.1080/01495738308942164.
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigen value approach to generalized thermoelasticity", Indian J. Pure Appl. Mathem., 28, 1573-1594.
- Dawn, N.C. and Chakraborty, S.K. (1988), "On Rayleigh waves in Green-Lindsay's model of generalized thermoelastic media", Indian J. Pure Appl. Mathem., 20, 276-283.
- Eringen, A.C. (2002), "Nonlocal Continuum Theories", New York, NY, USA, Springer.
- Goodman, M.A. and Cowin, S.C. (1972), "A continuum theory for granular materials", Arch. Rational Mech. Anal., 44(4), 249-266. https://doi.org/10.1007/BF00284326.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Thermal Stresses, 22, 451-76. https://doi.org/10.1080/014957399280832
- Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mechanica, 60,67-89. https://doi.org/10.1007/BF01302942
- Iesan, D. (2005), "Thermoelastic models of continua", Boston, MA: Kluwer Academic Publishers.
- Kaur, G., Singh, D. and Tomar, S.K. (2018), "Rayleigh-type wave in a nonlocal elastic solid with voids", Europ. J. Mech.,71, 134-150. https://doi.org/10.1016/j.euromechsol.2018.03.015
- Kumar, R. and Kumar, R. (2011), "Wave Propagation in orthotropic generalized thermoelastic half-space with voids under initial stress", Int. J. Appl. Mathem. Mechanics, 7, 17-44.
- Kumar, R. and Rani, L. (2005), "Mechanical and thermal sourses in generalized thermoelastic half-space with voids", Indian J. Pure Appl. Mathem., 36, 113-133.
- Kuznetsov, S.V. (2003), "Surface waves of non-Rayleigh type", Quart. Appl. Mathem., LXI(3), 575-582. https://doi.org/10.1090/qam/1999838
- Kuznetsov, S.V. (2018), "Cauchy formalism for Lamb waves in functionally graded plates", J. Vib. Control, 25(6), 1-6.
- Lata, P. (2022), "Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current", Steel Compos. Struct., 42(6), 723-732.
- Lata, P. and Singh, S. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131.
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141-150.
- Lata, P., Kaur, I. and Singh, K. (2021), "Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer", Steel Compos. Struct., 40(6), 829-838.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamic theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Nobili, A. and Prikazchikov, D.A. (2018), "Explicit formulation for the Rayleigh wave field induced by surface stresses in an orthorhombic half-plane", Europ. J. Mech.- A/Solids, 70, 86-94. https://doi.org/10.1016/j.euromechsol.2018.01.012
- Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rational Mech. Anal., 72(2), 175-201. https://doi.org/10.1007/bf00249363.
- Pramanik, A.S. and Biswas, S. (2020a), "Surface waves in porous thermoelastic medium with two relaxation times", Mech. Based Des. Struct. Machines, 1-19. doi:10.1080/15397734.2020.1831532.
- Pramanik, A.S. and Biswas, S. (2020b), "Eigenvalue approach to hyperbolic thermoelastic problem in porous orthotropic medium with Green-Lindsay model", Mech. Based Des. Struct. Machines, 50(12), 4229-4245. https://doi.org/10.1080/15397734.2020.1830291
- Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elasticity, 15(2), 167-83. https://doi.org/10.1007/BF00041991.
- Rayleigh, L. (1885), "On waves propagated along the plane surface of an elastic solid", Proceedings of the London Mathematical Society, 17(1), 4-11. https://doi.org/10.1112/plms/s1-17.1.4.
- Singh, B. (2007), "Wave propagation in generalized thermoelastic material with voids", Appl. Mathem. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
- Singh, B. (2015), "Rayleigh wave in a thermoelastic solid half-space with impedance boundary conditions", Meccanica, 51(5), 1135-1139. https://doi.org/10.1007/s11012-015-0269-y
- Singh, S.S. and Tochhawng, L. (2019), "Stoneley and Rayleigh waves in thermoelastic materials with voids", J. Vib. Control, 25(14), 2053-3062. https://doi.org/10.1177/1077546319847850.
- Vinh, P.C., and Anh, V.T.N. (2017), "Rayleigh waves in an orthotropic elastic half-space overlaid by an elastic layer with spring contact", Meccanica, 52, 1189-1199. https://doi.org/10.1007/s11012-016-0464-5
- Zorammuana, C. and Singh, S.S. (2016), "Elastic waves in thermoelastic saturated porous medium", Meccanica, 51(3), 593-609. https://doi.org/10.1007/s11012-015-0225-x