DOI QR코드

DOI QR Code

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Received : 2022.02.11
  • Accepted : 2023.12.04
  • Published : 2024.01.25

Abstract

In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Keywords

Acknowledgement

The author would like to acknowledge the financial supports of Afra Research and Development Company. Besides, the impact laboratory of Semnan University where the low-velocity impacts have been conducted.

References

  1. Abramowicz, W. (2003), "Thin-walled structures as impact energy absorbers", Thin-Wall. Struct., 41(2-3), 91-107. https://doi.org/10.1016/S0263-8231(02)00082-4.
  2. Adesola, A.O., Odeshi, A.G. and Lanke, U.D. (2013), "The effects of aging treatment and strain rates on damage evolution in AA 6061 aluminum alloy in compression", Mater. Des., 45, 212-221. https://doi.org/10.1016/j.matdes.2012.08.021.
  3. Aghamirzaie, M., Najibi, A. and Ghasemi-Ghalebahman, A. (2022), "Energy absorption investigation of octagonal multilayered origami thin-walled tubes under quasi-static axial loading", Int. J. Crashworthiness, 1-12. https://doi.org/10.1080/13588265.2022.2109765.
  4. Ahmad, Z., Thambiratnam, D.P. and Tan, A. C.C. (2010), "Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading", Int. J. Impact Eng., https://doi.org/10.1016/j.ijimpeng.2009.11.010.
  5. Albooyeh, A., Soleymani, P. and Taghipoor, H. (2022), "Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/epoxy nanocomposites: Optimizing by response surface approach", J. Mech. Behavior Biomedical Mater., 136, 105513. https://doi.org/10.1016/j.jmbbm.2022.105513.
  6. Arabzadeh, H. and Zeinoddini, M. (2011), "Dynamic response of pressurized submarine pipelines subjected to transverse impact loads", Procedia Eng., 14, 648-655. https://doi.org/10.1016/j.proeng.2011.07.082.
  7. Bai, J., Meng, G., Wu, H. and Zuo, W. (2019), "Bending collapse of dual rectangle thin-walled tubes for conceptual design", Thin-Wall. Struct., 135(November 2018), 185-195. https://doi.org/10.1016/j.tws.2018.11.014.
  8. Baroutaji, A., Arjunan, A., Stanford, M., Robinson, J. and Olabi, A.G. (2021), "Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing", Eng. Struct., 226(April 2020), 111324. https://doi.org/10.1016/j.engstruct.2020.111324.
  9. Bigdeli, A. and Damghani Nouri, M. (2019), "Experimental and numerical analysis and multi-objective optimization of quasistatic compressive test on thin-walled cylindrical with internal networking", Mech. Adv. Mater. Struct., 26(19), 1644-1660. https://doi.org/10.1080/15376494.2018.1444231.
  10. Bilston, D., Ruan, D., Candido, A. and Durandet, Y. (2019), "Parametric study of the cross-section shape of aluminium tubes in dynamic three-point bending", Thin-Wall. Struct., 136(July 2018), 315-322. https://doi.org/10.1016/j.tws.2018.12.032.
  11. Chen, W., Wierzbicki, T. and Santosa, S. (2002), "Bending collapse of thin-walled beams with ultralight filler: Numerical simulation and weight optimization", Acta Mechanica. https://doi.org/10.1007/BF01177451.
  12. de la Rosa, A., Ruiz, G. and Poveda, E. (2019), "Study of the compression behavior of steel-fiber reinforced concrete by means of the response surface methodology", Appl. Sci., (Switzerland), 9(24). https://doi.org/10.3390/app9245330.
  13. Estrada, Q., Szwedowicz, D., Rodriguez-Mendez, A., Elias-Espinosa, M., Silva-Aceves, J., Bedolla-Hernandez, J. and Gomez-Vargas, O.A. (2019), "Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bi-tubular profiles", Thin-Wall. Struct., 140(December 2018), 43-59. https://doi.org/10.1016/j.tws.2019.02.039.
  14. Estrada, Q., Szwedowicz, D., Tran, T., Rodriguez-Mendez, A., Elias-Espinosa, M., Gomez-Vargas, O.A. and Partida-Ochoa, G. (2022), "Bending crashworthiness of elliptical tubes with different aspect ratio and stiffeners", Int. J. Adv. Manufact. Technol., 120(9-10), 6661-6680. https://doi.org/10.1007/s00170-022-09187-z.
  15. Estrada, Q., Vergara-Vazquez, J., Szwedowicz, D., Rodriguez-Mendez, A., Gomez-Vargas, O.A., Partida-Ochoa, G. and Ortiz-Dominguez, M. (2021), "Effect of end-clamping constraints on bending crashworthiness of square profiles", Int. J. Adv. Manufact. Technol., 116(9-10), 3115-3134. https://doi.org/10.1007/s00170-021-07678-z.
  16. Galehdari, S.A., Kadkhodayan, M. and Hadidi-Moud, S. (2015), "Low velocity impact and quasi-static in-plane loading on a graded honeycomb structure; experimental, analytical and numerical study", Aeros. Sci. Technol., 47, 425-433. https://doi.org/10.1016/j.ast.2015.10.010.
  17. Ghazifard, P., Najibi, A. and Alizadeh, P. (2019), "Numerical crashworthiness analysis of graded layered foam-filled tubes under axial loading", Mech. Adv. Compos. Struct., 6(1), 57-64. https://doi.org/10.22075/macs.2019.16180.1168.
  18. Gupta, N.K. and Ray, P. (1999), "Simply supported empty and filled thin-square-tubular beams under central wedge loading", Thin-Wall. Struct., 34(4), 261-278. https://doi.org/10.1016/S0263-8231(99)00014-2.
  19. Gupta, N.K. and Sinha, S.K. (1990), "Collapse of a laterally compressed square tube resting on a flat base", Int. J. Solids Struct., 26(5-6), 601-615. https://doi.org/10.1016/0020-7683(90)90032-Q.
  20. Huang, Z., Li, Y., Zhang, X., Chen, W. and Fang, D. (2021), "A comparative study on the energy absorption mechanism of aluminum/CFRP hybrid beams under quasi-static and dynamic bending", Thin-Wall. Struct., 163(January), 107772. https://doi.org/10.1016/j.tws.2021.107772.
  21. Huang, Z. and Zhang, X. (2019), "Three-point bending of thin-walled rectangular section tubes with indentation mode", Thin-Wall. Struct., 137(December 2018), 231-250. https://doi.org/10.1016/j.tws.2019.01.015.
  22. Kami, A. and Karami, J.S. (2021), "An investigation on three-point bending of foam-filled double tubes and parameter optimization using response surface methodology", Mech. Adv. Compos. Struct., 8(1), 41-50. https://doi.org/10.22075/MACS.2021.20410.1259.
  23. Karahan, O.C. and Esener, E. (2021), "Determining the behavior of door impact beam tubes under three point bending loading", Int. J. Automotive Sci. Technol., 5, 58-62. https://doi.org/10.30939/ijastech.826458.
  24. Karamanos, S.A. and Andreadakis, K.P. (2006), "Denting of internally pressurized tubes under lateral loads", Int. J. Mech. Sci., 48(10), 1080-1094. https://doi.org/10.1016/j.ijmecsci.2006.03.018.
  25. Kecman, D. (1983), "Bending collapse of rectangular and square section tubes", Int. J. Mech. Sci., https://doi.org/10.1016/0020-7403(83)90072-3.
  26. Lal, L.P.J., Yuvaraj, G. and Ramesh, S. (2019), "Investigation of energy absorption behaviour of square aluminium tubes with cutouts under axial compression", Mater. Sci. Forum, 969, 181-186. https://doi.org/10.4028/www.scientific.net/MSF.969.181.
  27. Liu, B., Villavicencio, R. and Guedes Soares, C. (2014), "On the failure criterion of aluminum and steel plates subjected to low-velocity impact by a spherical indenter", Int. J. Mech. Sci., 80, 1-15. https://doi.org/10.1016/j.ijmecsci.2013.12.015.
  28. Liu, Q., Xu, X., Ma, J., Wang, J., Shi, Y. and Hui, D. (2017), "Lateral crushing and bending responses of CFRP square tube filled with aluminum honeycomb", Composi. Part B: Eng., 118, 104-115. https://doi.org/10.1016/j.compositesb.2017.03.021.
  29. Liu, Y. and Day, M.L. (2008), "Bending collapse of thin-walled circular tubes and computational application", Thin-Wall. Struct., 46(4), 442-450. https://doi.org/10.1016/j.tws.2007.07.014.
  30. Mohotti, D., Ali, M., Ngo, T., Lu, J., Mendis, P. and Ruan, D. (2013), "Out-of-plane impact resistance of aluminium plates subjected to low velocity impacts", Mater. Des., 50, 413-426. https://doi.org/10.1016/j.matdes.2013.03.023.
  31. Mohotti, D., Ngo, T., Raman, S.N., Ali, M. and Mendis, P. (2014), "Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact", Mater. Des., 56, 696-713. https://doi.org/10.1016/j.matdes.2013.11.063.
  32. Najibi, A., Alizadeh, P. and Ghazifard, P. (2018), "Nonlinear transient thermal stress analysis of a thick hollow FGM cylinder with finite length", The 26th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2018.
  33. Najibi, A., Alizadeh, P. and Ghazifard, P. (2021), "Transient thermal stress analysis for a short thick hollow FGM cylinder with nonlinear temperature-dependent material properties", J. Thermal Anal. Calorimetry, 146(5), 1971-1982. https://doi.org/10.1007/s10973-020-10442-2.
  34. Najibi, A., Ghazifard, P. and Alizadeh, P. (2020), "Numerical crashworthiness analysis of a novel functionally graded foamfilled tube", J. Sandw. Struct. Mater., 23(5), 1635-1661. https://doi.org/10.1177/1099636219900334.
  35. Santosa, S., Banhart, J. and Wierzbicki, T. (1999), "Bending crush behavior of foam-filled sections", Mater. Sci., 337-345.
  36. Thomas, S.G., Reid, S.R. and Johnson, W. (1976), "Large deformations of thin-walled circular tubes under transverse loading-I. An experimental survey of the bending of simply supported tubes under a central load", Int. J. Mech. Sci., 18(6), 325-333. https://doi.org/10.1016/0020-7403(76)90035-7.
  37. Xiao, Y., Wen, X. and Liang, D. (2021), "Failure modes and energy absorption mechanism of CFRP Thin-walled square beams filled with aluminum honeycomb under dynamic impact", Compos. Struct., 271(February), 114159. https://doi.org/10.1016/j.compstruct.2021.114159.
  38. Yang, K., Sha, Y. and Yu, T. (2021), "Research on three-point bending mechanical performance of square tube structure filled with foam aluminum", Mechanics, 27(6), 442-450. https://doi.org/10.5755/j02.mech.28613.
  39. Yao, S., Li, Z., Yan, J., Xu, P. and Peng, Y. (2018), "Analysis and parameters optimization of an expanding energy-absorbing structure for a rail vehicle coupler", Thin-Wall. Structu., 125(February), 129-139. https://doi.org/10.1016/j.tws.2018.01.011.
  40. Yildirim, Z.B., Karacasu, M. and Okur, V. (2020), "Optimisation of Marshall Design criteria with central composite design in asphalt concrete", Int. J. Pavement Eng., 21(5), 666-676. https://doi.org/10.1080/10298436.2018.1502439.
  41. Yu, J.L., Wang, E., Li, J. and Zheng, Z. (2008), "Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending", Int. J. Impact Eng., 35(8), 885-894. https://doi.org/10.1016/j.ijimpeng.2008.01.006.
  42. Yu, J.L., Wang, X., Wei, Z.G. and Wang, E.H. (2003), "Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core", Int. J. Impact Eng., https://doi.org/10.1016/S0734-743X(02)00053-2.
  43. Zhang, X. and Zhang, H. (2013), "Energy absorption of multi-cell stub columns under axial compression", Thin-Wall. Struct., 68, 156-163. https://doi.org/10.1016/j.tws.2013.03.014.
  44. Zhang, X., Zhang, H. and Ren, W. (2016), "Bending collapse of folded tubes", Int. J. Mech. Sci., 117, 67-78. https://doi.org/10.1016/j.ijmecsci.2016.07.016.
  45. Zhang, X., Zhang, H. and Wang, Z. (2016), "Bending collapse of square tubes with variable thickness", Int. J. Mech. Sci., 106, 107-116. https://doi.org/10.1016/j.ijmecsci.2015.12.006.
  46. Zhang, Z., Liu, S. and Tang, Z. (2009), "Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam", Thin-Wall. Struct., 47(8-9), 868-878. https://doi.org/10.1016/j.tws.2009.02.009.