참고문헌
- Abramovich, H. and Zarutskii, V.A. (2010), "Stability and vibrations of cylindrical shells discretely reinforced with rings", Int. Appl. Mech., 46(1), 46-53. https://doi.org/10.1007/s10778-010-0280-x.
- Aileni, K., Prasanna, P. and Jain, P.C. (2017), "Buckling analysis of ring stiffened circular cylinders using ANSYS", Int. J. Res. Appl. Sci. Eng. Technol. 5, 2287-2296.
- Al-Kalali, R.H.M. (2018), "Optimum buckling design of cylindrical stiffener shell under external hydrostatic pressure", Iraqi J. Mech. Mater. Eng., 18(2), 239-252. https://doi.org/10.32852/iqjfmme.Vol18.Iss2.91
- Amoushahi, H. (2018), "Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using Third order shear deformation theory", Eur. J. Mech.-A/Solid., 68, 38-52. https://doi.org/10.1016/j.euromechsol.2017.11.003.
- Ansari, M., Jeddi, M.Z., Badaruzzaman, W.H.W., Tahir, M.M., Osman, S.A. and Hosseinpour, E. (2021), "A numerical investigation on the through rib stiffener beam to concrete-filled steel tube column connections subjected to cyclic loading", Eng. Sci. Technol., 24(3), 728-735. https://doi.org/10.1016/j.jestch.2020.10.004.
- Ansari, R., Hassani, R., Faraji Oskouie, M. and Rouhi, H. (2021), "Nonlinear bending analysis of hyperelastic Mindlin plates: A numerical approach", Acta Mechanica, 232(2), 741-760. https://doi.org/10.1007/s00707-020-02756-x.
- Barani, S., Poorveis, D. and Moradi, S. (2012), "Buckling analysis of ring-stiffened laminated composite cylindrical shells by fourier-expansion based differential quadrature method", Appl. Mech. Mater., 225, 207-212. https://doi.org/10.4028/www.scientific.net/AMM.225.207.
- Bayat, A., Jalali, A. and Ahmadi, H. (2021), "Nonlinear dynamic analysis and control of FG cylindrical shell fitted with piezoelectric layers", Int. J. Struct. Stab. Dyn., 21(6), 2150083. https://doi.org/10.1142/S0219455421500838.
- Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
- Borkovic, A., Kovacevic, S., Milasinovic, D.D., Radenkovic, G., Mijatovic, O. and Golubovic-Bugarski, V. (2017), "Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method", Thin Wall. Struct., 117, 63-88. https://doi.org/10.1016/j.tws.2017.03.033.
- Celebi, M., Gurdal, Z., Tatting, B., Blom-Schieber, A., Rassaian, M., Wanthal, S. and Turkmen, H.S. (2019), "Bending of composite cylindrical shells with circular cutouts: Buckling and failure analysis", J. Aircraft, 56(4), 1551-1564. https://doi.org/10.2514/1.C035246.
- Chauhan, S. and Ahmad, A. (2018), "Buckling of circular cylinder under axial load", Int. J. Eng. Technol., 7(4), 404-406.
- Dawe, D.J. (1977), "Finite strip buckling analysis of curved plate assemblies under biaxial loading", Int. J. Solid. Struct., 13(11), 1141-1155. https://doi.org/10.1016/0020-7683(77)90083-X.
- Dawe, D.J. (1977), "Static analysis of diaphragm supported cylindrical shells using a curved finite strip", Int. J. Numer. Meth. Eng., 11(9), 1347-1364. https://doi.org/10.1002/nme.1620110902.
- Frano, R.L. and Forasassi, G. (2009), "Experimental evidence of imperfection influence on the buckling of thin cylindrical shell under uniform external pressure", Nucl. Eng. Des., 239(2), 193-200. https://doi.org/10.1016/j.nucengdes.2008.09.004.
- Ghahfarokhi, D.S. and Rahimi, G. (2018), "An analytical approach for global buckling of composite sandwich cylindrical shells with lattice cores", Int. J. Solid. Struct., 146, 69-79. https://doi.org/10.1016/j.ijsolstr.2018.03.021.
- Han, J.Y., Jung, H.Y., Cho, J.R., Choi, J.H. and Bae, W.B. (2008), "Buckling analysis and test of composite shells under hydrostatic pressure", J. Mater. Proc. Technol., 201(1-3), 742-745. https://doi.org/10.1016/j.jmatprotec.2007.11.228.
- Hao, P., Wang, B., Tian, K., Li, G., Du, K. and Niu, F. (2016), "Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners", AIAA J., 54(4), 1350-1363. https://doi.org/10.2514/1.J054445.
- Hao, P., Yuan, X., Liu, C., Wang, B., Liu, H., Li, G. and Niu, F. (2018), "An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels", Comput. Meth. Appl. Mech. Eng., 339, 205-238. https://doi.org/10.1016/j.cma.2018.04.046.
- Huang, S. and Qiao, P. (2020), "A new semi-analytical method for nonlinear stability analysis of stiffened laminated composite doubly-curved shallow shells", Compos. Struct., 251, 112526. https://doi.org/10.1016/j.compstruct.2020.112526.
- Keshav, V., Patel, S.N. and Kumar, R. (2019), "Stability and failure study of suddenly loaded laminated composite cylindrical panel", Int. J. Appl. Mech., 11(10), 1950093. https://doi.org/10.1142/S1758825119500935.
- Kidane, S., Li, G., Helms, J., Pang, S.S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos. Part B: Eng., 34(1), 1-9. https://doi.org/10.1016/S1359-8368(02)00074-4.
- Koiter, W.T. (1960), "A consistent first approximation in the general theory of thin elastic shells", The Theory of Thin Elastic Shells, 12-33.
- Li, C. and Wu, Z. (2015), "Buckling of 120° stiffened composite cylindrical shell under axial compression-Experiment and simulation", Compos. Struct., 128, 199-206. https://doi.org/10.1016/j.compstruct.2015.03.056.
- Lurie, S., Volkov-Bogorodskiy, D., Solyaev, Y., Koshurina, A. and Krasheninnikov, M. (2020), "Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins", Compos. Struct., 248, 112479. https://doi.org/10.1016/j.compstruct.2020.112479.
- Mandal, P. and Calladine, C.R. (2000), "Buckling of thin cylindrical shells under axial compression", Int. J. Solid. Struct., 37(33), 4509-4525. https://doi.org/10.1016/S0020-7683(99)00160-2.
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
- Multiphysics, A.N. (2015), Version 16.0. ANSYS, Inc., Canonsburg, Pennsylvania, USA.
- Naghsh, A., Saadatpour, M.M. and Azhari, M. (2015), "Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method", Thin Wall. Struct., 94, 651-662. https://doi.org/10.1016/j.tws.2015.05.015.
- Nam, V.H., Phuong, N.T. and Duc, V.M. (2019), "Nonlinear buckling of orthogonal carbon nanotube-reinforced composite cylindrical shells under axial compression surrounded by elastic foundation in thermal environment", Int. J. Comput. Mater. Sci. Eng., 8(04), 1950016. https://doi.org/10.1142/S2047684119500167.
- Nam, V.H., Phuong, N.T., Doan, C.V. and Trung, N.T. (2019), "Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure", Int. J. Appl. Mech., 11(05), 1950045. https://doi.org/10.1142/S1758825119500455.
- Nguyen, T.P. and Dao, H.B. (2013), "Buckling analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under mechanical load", VNU J. Sci.: Math.-Phys., 29(2), 55-72.
- Patel, A., Das, R. and Sahu, S.K. (2020), "Experimental and numerical study on free vibration of multiwall carbon nanotube reinforced composite plates", Int. J. Struct. Stab. Dyn., 20(12), 2050129. https://doi.org/10.1142/S0219455420501291.
- Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol., 19(3), 1608-1625. https://doi.org/10.1016/j.jestch.2016.05.014.
- Phuong, N.T., Trung, N.T., Van Doan, C., Thang, N.D., Duc, V.M. and Nam, V.H. (2020), "Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure", Acta Mechanica, 231(12), 5125-5144. https://doi.org/10.1007/s00707-020-02813-5.
- Prabu, B., Srinivasan, R. and Naarayen, K.A. (2009), "Finite element analysis of buckling of thin cylindrical shell subjected to uniform external pressure", J. Solid Mech., 1(2), 148-158.
- Prasad, E.V. and Sahu, S.K. (2018), "Vibration analysis of woven fiber metal laminated plates-experimental and numerical studies", Int. J. Struct. Stab. Dyn., 18(11), 1850144. https://doi.org/10.1142/S0219455418501444.
- Rotter, J.M., Cai, M. and Holst, J.M. (2011), "Buckling of thin cylindrical shells under locally elevated compressive stresses", J. Press. Ves. Technol., 133(1), 011204. https://doi.org/10.1115/1.4002771.
- Sahoo, S. (2014), "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Eng. Sci. Technol., 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002.
- Sahoo, S. (2021), "Buckling characteristics of cut-out borne composite stiffened hyperbolic paraboloid shell panel", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 235(11), 2404-2422. https://doi.org/10.1177/14644207211005802.
- Sahoo, S. (2022), "Buckling behavior of laminated composite stiffened cylindrical shell panels having cutout for different parametric variations", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(22), 10987-11007. https://doi.org/10.1177/09544062221100613.
- Shahgholian-Ghahfarokhi, D. and Rahimi, G. (2018), "Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique", Compos. Sci. Technol., 167, 470-481. https://doi.org/10.1016/j.compscitech.2018.08.046.
- Shahgholian-Ghahfarokhi, D. and Rahimi, G. (2019), "Buckling analysis of composite lattice sandwich shells under uniaxial compression based on the effective analytical equivalent approach", Compos. Part B: Eng., 174, 106932. https://doi.org/10.1016/j.compositesb.2019.106932.
- Shaterzadeh, A., Foroutan, K. and Ahmadi, H. (2019), "Nonlinear static and dynamic thermal buckling analysis of spiral stiffened functionally graded cylindrical shells with elastic foundation", Int. J. Appl. Mech., 11(01), 1950005. https://doi.org/10.1142/S1758825119500054.
- Singer, J., Baruch, M. and Harari, O. (1967), "On the stability of eccentrically stiffened cylindrical shells under axial compression", Int. J. Solid. Struct., 3(4), 445-470. https://doi.org/10.1016/0020-7683(67)90001-7.
- Standard, A.S.T.M. (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039/DM,3039.
- Standard, A.S.T.M. (2009), Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials using a Combined Loading Compression (CLC) Test Fixture, ASTM International, West Conshohocken, PA, USA.
- Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons, New Jersey, USA.
- Tanzadeh, H. and Amoushahi, H. (2019), "Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories", Eur. J. Mech.-A/Solid., 74, 242-256. https://doi.org/10.1016/j.euromechsol.2018.11.013.
- Taskin, M., Arikoglu, A. and Demir, O. (2019), "Vibration and damping analysis of sandwich cylindrical shells by the GDQM", AIAA J., 57(7), 3040-3051. https://doi.org/10.2514/1.J058128.
- Uriol Balbin, I., Bisagni, C., Schultz, M.R. and Hilburger, M.W. (2020), "Scaling methodology applied to buckling of sandwich composite cylindrical shells", AIAA J., 58(8), 3680-3689. https://doi.org/10.2514/1.J058999.
- Wang, B., Du, K., Hao, P., Zhou, C., Tian, K., Xu, S., Ma, Y. and Zhang, X. (2016), "Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression", Thin Wall. Struct., 109, 13-24. https://doi.org/10.1016/j.tws.2016.09.008.
- Wang, S. and Dawe, D.J. (1999), "Buckling of composite shell structures uing the spline finite strip method", Compos. Part B: Eng., 30(4), 351-364. https://doi.org/10.1016/S1359-8368(99)00005-0.
- Wodesenbet, E., Kidane, S. and Pang, S.S. (2003), "Optimization for buckling loads of grid stiffened composite panels", Compos. Struct., 60(2), 159-169. https://doi.org/10.1016/S0263-8223(02)00315-X.
- Yazdani, M. and Rahimi, G.H. (2010), "The effects of helical ribs' number and grid types on the buckling of thin-walled GFRP-stiffened shells under axial loading", J. Reinf. Plast. Compos., 29(17), 2568-2575. https://doi.org/10.1177/0731684409355202.
- Yazdani, M. and Rahimi, G.H. (2011), "The behavior of GFRP-stiffened and-unstiffened shells under cyclic axial loading and unloading", J. Reinf. Plast. Compos., 30(5), 440-445. https://doi.org/10.1177/0731684411398537.