DOI QR코드

DOI QR Code

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee (Department of Civil Engineering and Transportation, University of Isfahan) ;
  • Hossein Amoushahi (Department of Civil Engineering and Transportation, University of Isfahan) ;
  • Mehrdad Hejazi (Department of Civil Engineering and Transportation, University of Isfahan)
  • Received : 2022.11.05
  • Accepted : 2024.01.09
  • Published : 2024.01.25

Abstract

A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Keywords

References

  1. Abramovich, H. and Zarutskii, V.A. (2010), "Stability and vibrations of cylindrical shells discretely reinforced with rings", Int. Appl. Mech., 46(1), 46-53. https://doi.org/10.1007/s10778-010-0280-x.
  2. Aileni, K., Prasanna, P. and Jain, P.C. (2017), "Buckling analysis of ring stiffened circular cylinders using ANSYS", Int. J. Res. Appl. Sci. Eng. Technol. 5, 2287-2296.
  3. Al-Kalali, R.H.M. (2018), "Optimum buckling design of cylindrical stiffener shell under external hydrostatic pressure", Iraqi J. Mech. Mater. Eng., 18(2), 239-252. https://doi.org/10.32852/iqjfmme.Vol18.Iss2.91
  4. Amoushahi, H. (2018), "Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using Third order shear deformation theory", Eur. J. Mech.-A/Solid., 68, 38-52. https://doi.org/10.1016/j.euromechsol.2017.11.003.
  5. Ansari, M., Jeddi, M.Z., Badaruzzaman, W.H.W., Tahir, M.M., Osman, S.A. and Hosseinpour, E. (2021), "A numerical investigation on the through rib stiffener beam to concrete-filled steel tube column connections subjected to cyclic loading", Eng. Sci. Technol., 24(3), 728-735. https://doi.org/10.1016/j.jestch.2020.10.004.
  6. Ansari, R., Hassani, R., Faraji Oskouie, M. and Rouhi, H. (2021), "Nonlinear bending analysis of hyperelastic Mindlin plates: A numerical approach", Acta Mechanica, 232(2), 741-760. https://doi.org/10.1007/s00707-020-02756-x.
  7. Barani, S., Poorveis, D. and Moradi, S. (2012), "Buckling analysis of ring-stiffened laminated composite cylindrical shells by fourier-expansion based differential quadrature method", Appl. Mech. Mater., 225, 207-212. https://doi.org/10.4028/www.scientific.net/AMM.225.207.
  8. Bayat, A., Jalali, A. and Ahmadi, H. (2021), "Nonlinear dynamic analysis and control of FG cylindrical shell fitted with piezoelectric layers", Int. J. Struct. Stab. Dyn., 21(6), 2150083. https://doi.org/10.1142/S0219455421500838.
  9. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
  10. Borkovic, A., Kovacevic, S., Milasinovic, D.D., Radenkovic, G., Mijatovic, O. and Golubovic-Bugarski, V. (2017), "Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method", Thin Wall. Struct., 117, 63-88. https://doi.org/10.1016/j.tws.2017.03.033.
  11. Celebi, M., Gurdal, Z., Tatting, B., Blom-Schieber, A., Rassaian, M., Wanthal, S. and Turkmen, H.S. (2019), "Bending of composite cylindrical shells with circular cutouts: Buckling and failure analysis", J. Aircraft, 56(4), 1551-1564. https://doi.org/10.2514/1.C035246.
  12. Chauhan, S. and Ahmad, A. (2018), "Buckling of circular cylinder under axial load", Int. J. Eng. Technol., 7(4), 404-406.
  13. Dawe, D.J. (1977), "Finite strip buckling analysis of curved plate assemblies under biaxial loading", Int. J. Solid. Struct., 13(11), 1141-1155. https://doi.org/10.1016/0020-7683(77)90083-X.
  14. Dawe, D.J. (1977), "Static analysis of diaphragm supported cylindrical shells using a curved finite strip", Int. J. Numer. Meth. Eng., 11(9), 1347-1364. https://doi.org/10.1002/nme.1620110902.
  15. Frano, R.L. and Forasassi, G. (2009), "Experimental evidence of imperfection influence on the buckling of thin cylindrical shell under uniform external pressure", Nucl. Eng. Des., 239(2), 193-200. https://doi.org/10.1016/j.nucengdes.2008.09.004.
  16. Ghahfarokhi, D.S. and Rahimi, G. (2018), "An analytical approach for global buckling of composite sandwich cylindrical shells with lattice cores", Int. J. Solid. Struct., 146, 69-79. https://doi.org/10.1016/j.ijsolstr.2018.03.021.
  17. Han, J.Y., Jung, H.Y., Cho, J.R., Choi, J.H. and Bae, W.B. (2008), "Buckling analysis and test of composite shells under hydrostatic pressure", J. Mater. Proc. Technol., 201(1-3), 742-745. https://doi.org/10.1016/j.jmatprotec.2007.11.228.
  18. Hao, P., Wang, B., Tian, K., Li, G., Du, K. and Niu, F. (2016), "Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners", AIAA J., 54(4), 1350-1363. https://doi.org/10.2514/1.J054445.
  19. Hao, P., Yuan, X., Liu, C., Wang, B., Liu, H., Li, G. and Niu, F. (2018), "An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels", Comput. Meth. Appl. Mech. Eng., 339, 205-238. https://doi.org/10.1016/j.cma.2018.04.046.
  20. Huang, S. and Qiao, P. (2020), "A new semi-analytical method for nonlinear stability analysis of stiffened laminated composite doubly-curved shallow shells", Compos. Struct., 251, 112526. https://doi.org/10.1016/j.compstruct.2020.112526.
  21. Keshav, V., Patel, S.N. and Kumar, R. (2019), "Stability and failure study of suddenly loaded laminated composite cylindrical panel", Int. J. Appl. Mech., 11(10), 1950093. https://doi.org/10.1142/S1758825119500935.
  22. Kidane, S., Li, G., Helms, J., Pang, S.S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos. Part B: Eng., 34(1), 1-9. https://doi.org/10.1016/S1359-8368(02)00074-4.
  23. Koiter, W.T. (1960), "A consistent first approximation in the general theory of thin elastic shells", The Theory of Thin Elastic Shells, 12-33.
  24. Li, C. and Wu, Z. (2015), "Buckling of 120° stiffened composite cylindrical shell under axial compression-Experiment and simulation", Compos. Struct., 128, 199-206. https://doi.org/10.1016/j.compstruct.2015.03.056.
  25. Lurie, S., Volkov-Bogorodskiy, D., Solyaev, Y., Koshurina, A. and Krasheninnikov, M. (2020), "Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins", Compos. Struct., 248, 112479. https://doi.org/10.1016/j.compstruct.2020.112479.
  26. Mandal, P. and Calladine, C.R. (2000), "Buckling of thin cylindrical shells under axial compression", Int. J. Solid. Struct., 37(33), 4509-4525. https://doi.org/10.1016/S0020-7683(99)00160-2.
  27. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
  28. Multiphysics, A.N. (2015), Version 16.0. ANSYS, Inc., Canonsburg, Pennsylvania, USA.
  29. Naghsh, A., Saadatpour, M.M. and Azhari, M. (2015), "Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method", Thin Wall. Struct., 94, 651-662. https://doi.org/10.1016/j.tws.2015.05.015.
  30. Nam, V.H., Phuong, N.T. and Duc, V.M. (2019), "Nonlinear buckling of orthogonal carbon nanotube-reinforced composite cylindrical shells under axial compression surrounded by elastic foundation in thermal environment", Int. J. Comput. Mater. Sci. Eng., 8(04), 1950016. https://doi.org/10.1142/S2047684119500167.
  31. Nam, V.H., Phuong, N.T., Doan, C.V. and Trung, N.T. (2019), "Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure", Int. J. Appl. Mech., 11(05), 1950045. https://doi.org/10.1142/S1758825119500455.
  32. Nguyen, T.P. and Dao, H.B. (2013), "Buckling analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under mechanical load", VNU J. Sci.: Math.-Phys., 29(2), 55-72.
  33. Patel, A., Das, R. and Sahu, S.K. (2020), "Experimental and numerical study on free vibration of multiwall carbon nanotube reinforced composite plates", Int. J. Struct. Stab. Dyn., 20(12), 2050129. https://doi.org/10.1142/S0219455420501291.
  34. Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol., 19(3), 1608-1625. https://doi.org/10.1016/j.jestch.2016.05.014.
  35. Phuong, N.T., Trung, N.T., Van Doan, C., Thang, N.D., Duc, V.M. and Nam, V.H. (2020), "Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure", Acta Mechanica, 231(12), 5125-5144. https://doi.org/10.1007/s00707-020-02813-5.
  36. Prabu, B., Srinivasan, R. and Naarayen, K.A. (2009), "Finite element analysis of buckling of thin cylindrical shell subjected to uniform external pressure", J. Solid Mech., 1(2), 148-158.
  37. Prasad, E.V. and Sahu, S.K. (2018), "Vibration analysis of woven fiber metal laminated plates-experimental and numerical studies", Int. J. Struct. Stab. Dyn., 18(11), 1850144. https://doi.org/10.1142/S0219455418501444.
  38. Rotter, J.M., Cai, M. and Holst, J.M. (2011), "Buckling of thin cylindrical shells under locally elevated compressive stresses", J. Press. Ves. Technol., 133(1), 011204. https://doi.org/10.1115/1.4002771.
  39. Sahoo, S. (2014), "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Eng. Sci. Technol., 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002.
  40. Sahoo, S. (2021), "Buckling characteristics of cut-out borne composite stiffened hyperbolic paraboloid shell panel", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 235(11), 2404-2422. https://doi.org/10.1177/14644207211005802.
  41. Sahoo, S. (2022), "Buckling behavior of laminated composite stiffened cylindrical shell panels having cutout for different parametric variations", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(22), 10987-11007. https://doi.org/10.1177/09544062221100613.
  42. Shahgholian-Ghahfarokhi, D. and Rahimi, G. (2018), "Buckling load prediction of grid-stiffened composite cylindrical shells using the vibration correlation technique", Compos. Sci. Technol., 167, 470-481. https://doi.org/10.1016/j.compscitech.2018.08.046.
  43. Shahgholian-Ghahfarokhi, D. and Rahimi, G. (2019), "Buckling analysis of composite lattice sandwich shells under uniaxial compression based on the effective analytical equivalent approach", Compos. Part B: Eng., 174, 106932. https://doi.org/10.1016/j.compositesb.2019.106932.
  44. Shaterzadeh, A., Foroutan, K. and Ahmadi, H. (2019), "Nonlinear static and dynamic thermal buckling analysis of spiral stiffened functionally graded cylindrical shells with elastic foundation", Int. J. Appl. Mech., 11(01), 1950005. https://doi.org/10.1142/S1758825119500054.
  45. Singer, J., Baruch, M. and Harari, O. (1967), "On the stability of eccentrically stiffened cylindrical shells under axial compression", Int. J. Solid. Struct., 3(4), 445-470. https://doi.org/10.1016/0020-7683(67)90001-7.
  46. Standard, A.S.T.M. (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039/DM,3039.
  47. Standard, A.S.T.M. (2009), Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials using a Combined Loading Compression (CLC) Test Fixture, ASTM International, West Conshohocken, PA, USA.
  48. Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons, New Jersey, USA.
  49. Tanzadeh, H. and Amoushahi, H. (2019), "Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories", Eur. J. Mech.-A/Solid., 74, 242-256. https://doi.org/10.1016/j.euromechsol.2018.11.013.
  50. Taskin, M., Arikoglu, A. and Demir, O. (2019), "Vibration and damping analysis of sandwich cylindrical shells by the GDQM", AIAA J., 57(7), 3040-3051. https://doi.org/10.2514/1.J058128.
  51. Uriol Balbin, I., Bisagni, C., Schultz, M.R. and Hilburger, M.W. (2020), "Scaling methodology applied to buckling of sandwich composite cylindrical shells", AIAA J., 58(8), 3680-3689. https://doi.org/10.2514/1.J058999.
  52. Wang, B., Du, K., Hao, P., Zhou, C., Tian, K., Xu, S., Ma, Y. and Zhang, X. (2016), "Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression", Thin Wall. Struct., 109, 13-24. https://doi.org/10.1016/j.tws.2016.09.008.
  53. Wang, S. and Dawe, D.J. (1999), "Buckling of composite shell structures uing the spline finite strip method", Compos. Part B: Eng., 30(4), 351-364. https://doi.org/10.1016/S1359-8368(99)00005-0.
  54. Wodesenbet, E., Kidane, S. and Pang, S.S. (2003), "Optimization for buckling loads of grid stiffened composite panels", Compos. Struct., 60(2), 159-169. https://doi.org/10.1016/S0263-8223(02)00315-X.
  55. Yazdani, M. and Rahimi, G.H. (2010), "The effects of helical ribs' number and grid types on the buckling of thin-walled GFRP-stiffened shells under axial loading", J. Reinf. Plast. Compos., 29(17), 2568-2575. https://doi.org/10.1177/0731684409355202.
  56. Yazdani, M. and Rahimi, G.H. (2011), "The behavior of GFRP-stiffened and-unstiffened shells under cyclic axial loading and unloading", J. Reinf. Plast. Compos., 30(5), 440-445. https://doi.org/10.1177/0731684411398537.