DOI QR코드

DOI QR Code

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan) ;
  • Mohammad Naeim Moradi (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan) ;
  • Mahdi Davar Panah (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
  • 투고 : 2022.05.23
  • 심사 : 2023.12.18
  • 발행 : 2024.01.25

초록

In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

키워드

참고문헌

  1. Ahmadi, I. (2021), "Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method", Eng. Anal. Bound. Elem., 124, 142-154. https://doi.org/10.1016/j.enganabound.2020.12.010. 
  2. Ahmadi, I. (2022), "Free vibration of multiple-nanobeam system with nonlocal Timoshenko beam theory for various boundary conditions", Eng. Anal. Bound. Elem., 143, 719-739. https://doi.org/10.1016/j.enganabound.2022.07.011. 
  3. Ahmadi, I., Davarpanah, M., Sladek, J., Sladek, V. and Moradi, M.N. (2024), "A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system", J. Brazil. Soc. Mech. Sci. Eng., 46(1), 1-23. https://doi.org/10.1007/s40430-023-04580-5. 
  4. Ahmadi, I., Sladek, J. and Sladek, V. (2023), "Size dependent free vibration analysis of 2D-functionally graded curved nanobeam by meshless method", Mech. Adv. Mater. Struct., 1-22. https://doi.org/10.1080/15376494.2023.2195400. 
  5. Aifantis, E.C. (1999). Strain Gradient Interpretation of Size Effects, Fracture scaling, Springer, Dordrecht. 
  6. Annin, B.D., Alekhin, V.V., Babichev, A.V. and Korobeynikov, S.N. (2010), "Computer simulation of nanotube contact", Mech. Solid., 45(3), 352-369. https://doi.org/10.3103/S0025654410030064. 
  7. Arash, B. and Wang, Q. (2014), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Model. Carbon Nanotub. Graph. Their Compos., 57-82. https://doi.org/10.1007/978-3-319-01201-8_2. 
  8. Atluri, S.N., Cho, J.Y. and Kim, H.G. (1999), "Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations", Comput. Mech., 24(5), 334-347. https://doi.org/10.1007/s004660050456. 
  9. Austen, G.J.M. and De Swart, J.J. (1983), "Improved coulomb potential", Phys. Rev. Lett., 50(26), 2039. https://doi.org/10.1103/PhysRevLett.50.2039. 
  10. Buckingham, A.D., Fowler, P.W. and Hutson, J.M. (1988), "Theoretical studies of van der Waals molecules and intermolecular forces", Chem. Rev., 88(6), 963-988. https://doi.org/10.1021/cr00088a008. 
  11. Ceballes, S., Larkin, K., Rojas, E., Ghaffari, S.S. and Abdelkefi, A. (2021), "Nonlocal elasticity and boundary condition paradoxes: A review", J. Nanopartic. Res., 23, 1-27. https://doi.org/10.1007/s11051-020-05107-y. 
  12. Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: A review", Nanotechnol. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev2020-0020. 
  13. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803. 
  14. Eslami, M.R. (2014), Finite Elements Methods in Mechanics, Springer International Publishing, Switzerland. 
  15. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006. 
  16. Farhadipour, F. and Mamandi, A. (2023), "Nonlocal wave propagation analysis of a rotating nanobeam on a Pasternak foundation", J. Vib. Control, 10775463221151192. https://doi.org/10.1177/10775463221151192. 
  17. Guo, H., Zhuang, X. and Rabczuk, T. (2021), "A deep collocation method for the bending analysis of Kirchhoff plate", arXiv preprint arXiv:2102.02617. 
  18. Hosseini-Hashemi, S. and Sepahi-Boroujeni, A. (2017), "Elastic impact response of a nonlocal rectangular plate", Int. J. Solid. Struct., 109, 93-100. https://doi.org/10.1016/j.ijsolstr.2017.01.010. 
  19. Hosseini-Hashemi, S., Sepahi-Boroujeni, A. and SepahiBoroujeni, S. (2018), "Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene", Appl. Surf. Sci., 437, 366-374. https://doi.org/10.1016/j.apsusc.2017.12.141. 
  20. Jian, W.R., Yao, X., Sun, Y., Xie, Z. and Zhang, X. (2019), "Sizedependent vibration analysis of carbon nanotubes", J. Mater. Res., 34(13), 2148-2160. https://doi.org/10.1557/jmr.2018.431. 
  21. Jones, J.E. (1924), "On the determination of molecular fields-I. From the variation of the viscosity of a gas with temperature", Proc. Roy. Soc. London. Ser. A, Contain. Paper.Math. Phys. Charac., 106(738), 441-462. https://doi.org/10.1098/rspa.1924.0081. 
  22. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech, 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617. 
  23. Khoram, M.M., Hosseini, M., Hadi, A. and Shishehsaz, M. (2020), "Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation", Int. J. Appl. Mech., 12(08), 2050093. https://doi.org/10.1142/S1758825120500933. 
  24. Kumar, H. and Mukhopadhyay, S. (2023), "Size-dependent thermoelastic damping analysis in nanobeam resonators based on Eringen's nonlocal elasticity and modified couple stress theories", J. Vib. Control, 29(7-8), 1510-1523. https://doi.org/10.1177/10775463211064689. 
  25. Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130. 
  26. Liu, G.R. (2009), Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press. 
  27. Liu, H., Liu, J., Yang, J.L. and Feng, X.Q. (2017), "Low velocity impact of a nanoparticle on a rectangular nanoplate: A theoretical study", Int. J. Mech. Sci., 123, 253-259. https://doi.org/10.1016/j.ijmecsci.2016.11.024. 
  28. Liu, Z. and Swaddiwudhipong, S. (1997), "Response of plate and shell structures due to low velocity impact", J. Eng. Mech., 123(12), 1230-1237. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1230). 
  29. Morse, P.M. (1929), "Diatomic molecules according to the wave mechanics. II. Vibrational levels", Phys. Rev., 34(1), 57. https://doi.org/10.1103/PhysRev.34.57. 
  30. Mylvaganam, K. and Zhang, L.C. (2006), "Energy absorption capacity of carbon nanotubes under ballistic impact", Appl. Phys. Lett., 89(12), 123127. https://doi.org/10.1063/1.2356325. 
  31. Neek-Amal, M. and Peeters, F.M. (2010), "Nanoindentation of a circular sheet of bilayer graphene", Phys. Rev. B, 81(23), 235421. https://doi.org/10.1103/PhysRevB.81.235421. 
  32. Noroozi, M., Ghadiri, M. and Zajkani, A. (2019), "Dynamic response of a size-dependent nanobeam to low velocity impact by a nanoparticle with considering atomic interaction forces", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(18), 6640-6655. https://doi.org/10.1177/0954406219864986. 
  33. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0. 
  34. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low Dimens. Syst. Nanostruct., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004. 
  35. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua, 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567. 
  36. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2019), "Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method", Steel Compos. Struct., 32(3), 293-304. https://doi.org/10.12989/sem.2019.32.3.293. 
  37. Raju, I. and Phillips, D. (2004), "Radial basis meshless local Petrov-Galerkin method for thick beams", 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, January. 
  38. Raju, I.S. and Phillips, D.R. (2002), "A meshless local PetrovGalerkin method for Euler-Bernoulli beam problems", International Conference on Computational Engineering and Science, January 
  39. Rao, S.S. (2004), Mechanical Vibrations, Pearson/Prentice Hall. 
  40. Rashidpour, P., Ghadiri, M. and Zajkani, A. (2021), "Low-velocity impact analysis of viscoelastic composite laminated nanoplate based on nonlocal strain gradient theory for different boundary conditions", J. Sandw. Struct. Mater., 23(7), 3194-3233. https://doi.org/10.1177/1099636220925070. 
  41. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004. 
  42. Ren, H., Zhuang, X. and Rabczuk, T. (2020), "A nonlocal operator method for solving partial differential equations", Comput. Meth. Appl. Mech. Eng., 358, 112621. https://doi.org/10.1016/j.cma.2019.112621. 
  43. Ren, Y.M. and Qing, H. (2021), "Bending and buckling analysis of functionally graded Euler-Bernoulli beam using stress-driven nonlocal integral model with bi-Helmholtz Kernel", Int. J. Appl. Mech., 13(04), 2150041. https://doi.org/10.1142/S1758825121500411. 
  44. Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010. 
  45. Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro-and nano-structures", Thin Wall. Struct., 170, 108562. https://doi.org/10.1016/j.tws.2021.108562. 
  46. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., ... & Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790. 
  47. Sayyad, A.S. and Ghugal, Y.M. (2020), "Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen's nonlocal theory", Int. J. Appl. Mech., 12(01), 2050007. https://doi.org/10.1142/S1758825120500076. 
  48. Sburlati, R. (2004), "An exact solution for the impact law in thick elastic plates", Int. J. Solid. Struct., 41(9-10), 2539-2550. https://doi.org/10.1016/j.ijsolstr.2003.12.009. 
  49. Schwerdtfeger, P., Burrows, A. and Smits, O.R. (2021), "The lennard-jones potential revisited: Analytical expressions for vibrational effects in cubic and hexagonal close-packed lattices", J. Phys. Chem. A, 125(14), 3037-3057. https://doi.org/10.1021/acs.jpca.1c00012. 
  50. Seifoori, S. (2015), "Molecular dynamics analysis on impact behavior of carbon nanotubes", Appl. Surf. Sci., 326, 12-18. https://doi.org/10.1016/j.apsusc.2014.11.095. 
  51. Seifoori, S. and Hajabdollahi, H. (2015), "Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation", Appl. Surf. Sci., 351, 565-572. https://doi.org/10.1016/j.apsusc.2015.05.114. 
  52. Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on Euler-Bernoulli nanobeam using a nonlocal elasticity model". 
  53. Sepahi-Boroujeni, A., Hosseini-Hashemi, S. and SepahiBoroujeni, S. (2020), "Effects of surface tension of graphene sheet on impact and rebound behavior of colliding nanoparticle", Superlatt. Microstruct., 140, 106464. https://doi.org/10.1016/j.spmi.2020.106464. 
  54. Stillinger, F.H. and Weber, T.A. (1985), "Computer simulation of local order in condensed phases of silicon", Phys. Rev. B, 31(8), 5262. https://doi.org/10.1103/PhysRevB.31.5262. 
  55. Sun, W., Zeng, Q., Yu, A. and Kendall, K. (2013), "Calculation of normal contact forces between silica nanospheres", Langmuir, 29(25), 7825-7837. https://doi.org/10.1021/la401087j. 
  56. Thai, C.H., Hung, P.T., Nguyen-Xuan, H. and Phung-Van, P. (2023), "A size-dependent meshfree approach for magnetoelectro-elastic functionally graded nanoplates based on nonlocal strain gradient theory", Eng. Struct., 292, 116521. https://doi.org/10.1016/j.engstruct.2023.116521. 
  57. Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414.  https://doi.org/10.1007/BF00253945
  58. Wang, W., Li, S., Min, J., Yi, C., Zhan, Y. and Li, M. (2014), "Nanoindentation experiments for single-layer rectangular graphene films: A molecular dynamics study", Nanosc. Res. Lett., 9(1), 1-8. https://doi.org/10.1186/1556-276X-9-41. 
  59. Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 462(2074), 2977-2995. https://doi.org/10.1098/rspa.2006.1712. 
  60. Yang, L. and Tong, L. (2016), "Suspended monolayer graphene traps high-speed single-walled carbon nanotube", Carbon, 107, 689-695. https://doi.org/10.1016/j.carbon.2016.06.041. 
  61. Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech.-A/Solid., 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225.