참고문헌
- Ahmadi, I. (2021), "Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method", Eng. Anal. Bound. Elem., 124, 142-154. https://doi.org/10.1016/j.enganabound.2020.12.010.
- Ahmadi, I. (2022), "Free vibration of multiple-nanobeam system with nonlocal Timoshenko beam theory for various boundary conditions", Eng. Anal. Bound. Elem., 143, 719-739. https://doi.org/10.1016/j.enganabound.2022.07.011.
- Ahmadi, I., Davarpanah, M., Sladek, J., Sladek, V. and Moradi, M.N. (2024), "A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system", J. Brazil. Soc. Mech. Sci. Eng., 46(1), 1-23. https://doi.org/10.1007/s40430-023-04580-5.
- Ahmadi, I., Sladek, J. and Sladek, V. (2023), "Size dependent free vibration analysis of 2D-functionally graded curved nanobeam by meshless method", Mech. Adv. Mater. Struct., 1-22. https://doi.org/10.1080/15376494.2023.2195400.
- Aifantis, E.C. (1999). Strain Gradient Interpretation of Size Effects, Fracture scaling, Springer, Dordrecht.
- Annin, B.D., Alekhin, V.V., Babichev, A.V. and Korobeynikov, S.N. (2010), "Computer simulation of nanotube contact", Mech. Solid., 45(3), 352-369. https://doi.org/10.3103/S0025654410030064.
- Arash, B. and Wang, Q. (2014), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Model. Carbon Nanotub. Graph. Their Compos., 57-82. https://doi.org/10.1007/978-3-319-01201-8_2.
- Atluri, S.N., Cho, J.Y. and Kim, H.G. (1999), "Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations", Comput. Mech., 24(5), 334-347. https://doi.org/10.1007/s004660050456.
- Austen, G.J.M. and De Swart, J.J. (1983), "Improved coulomb potential", Phys. Rev. Lett., 50(26), 2039. https://doi.org/10.1103/PhysRevLett.50.2039.
- Buckingham, A.D., Fowler, P.W. and Hutson, J.M. (1988), "Theoretical studies of van der Waals molecules and intermolecular forces", Chem. Rev., 88(6), 963-988. https://doi.org/10.1021/cr00088a008.
- Ceballes, S., Larkin, K., Rojas, E., Ghaffari, S.S. and Abdelkefi, A. (2021), "Nonlocal elasticity and boundary condition paradoxes: A review", J. Nanopartic. Res., 23, 1-27. https://doi.org/10.1007/s11051-020-05107-y.
- Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: A review", Nanotechnol. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev2020-0020.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eslami, M.R. (2014), Finite Elements Methods in Mechanics, Springer International Publishing, Switzerland.
- Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006.
- Farhadipour, F. and Mamandi, A. (2023), "Nonlocal wave propagation analysis of a rotating nanobeam on a Pasternak foundation", J. Vib. Control, 10775463221151192. https://doi.org/10.1177/10775463221151192.
- Guo, H., Zhuang, X. and Rabczuk, T. (2021), "A deep collocation method for the bending analysis of Kirchhoff plate", arXiv preprint arXiv:2102.02617.
- Hosseini-Hashemi, S. and Sepahi-Boroujeni, A. (2017), "Elastic impact response of a nonlocal rectangular plate", Int. J. Solid. Struct., 109, 93-100. https://doi.org/10.1016/j.ijsolstr.2017.01.010.
- Hosseini-Hashemi, S., Sepahi-Boroujeni, A. and SepahiBoroujeni, S. (2018), "Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene", Appl. Surf. Sci., 437, 366-374. https://doi.org/10.1016/j.apsusc.2017.12.141.
- Jian, W.R., Yao, X., Sun, Y., Xie, Z. and Zhang, X. (2019), "Sizedependent vibration analysis of carbon nanotubes", J. Mater. Res., 34(13), 2148-2160. https://doi.org/10.1557/jmr.2018.431.
- Jones, J.E. (1924), "On the determination of molecular fields-I. From the variation of the viscosity of a gas with temperature", Proc. Roy. Soc. London. Ser. A, Contain. Paper.Math. Phys. Charac., 106(738), 441-462. https://doi.org/10.1098/rspa.1924.0081.
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech, 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
- Khoram, M.M., Hosseini, M., Hadi, A. and Shishehsaz, M. (2020), "Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation", Int. J. Appl. Mech., 12(08), 2050093. https://doi.org/10.1142/S1758825120500933.
- Kumar, H. and Mukhopadhyay, S. (2023), "Size-dependent thermoelastic damping analysis in nanobeam resonators based on Eringen's nonlocal elasticity and modified couple stress theories", J. Vib. Control, 29(7-8), 1510-1523. https://doi.org/10.1177/10775463211064689.
- Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130.
- Liu, G.R. (2009), Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press.
- Liu, H., Liu, J., Yang, J.L. and Feng, X.Q. (2017), "Low velocity impact of a nanoparticle on a rectangular nanoplate: A theoretical study", Int. J. Mech. Sci., 123, 253-259. https://doi.org/10.1016/j.ijmecsci.2016.11.024.
- Liu, Z. and Swaddiwudhipong, S. (1997), "Response of plate and shell structures due to low velocity impact", J. Eng. Mech., 123(12), 1230-1237. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1230).
- Morse, P.M. (1929), "Diatomic molecules according to the wave mechanics. II. Vibrational levels", Phys. Rev., 34(1), 57. https://doi.org/10.1103/PhysRev.34.57.
- Mylvaganam, K. and Zhang, L.C. (2006), "Energy absorption capacity of carbon nanotubes under ballistic impact", Appl. Phys. Lett., 89(12), 123127. https://doi.org/10.1063/1.2356325.
- Neek-Amal, M. and Peeters, F.M. (2010), "Nanoindentation of a circular sheet of bilayer graphene", Phys. Rev. B, 81(23), 235421. https://doi.org/10.1103/PhysRevB.81.235421.
- Noroozi, M., Ghadiri, M. and Zajkani, A. (2019), "Dynamic response of a size-dependent nanobeam to low velocity impact by a nanoparticle with considering atomic interaction forces", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(18), 6640-6655. https://doi.org/10.1177/0954406219864986.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low Dimens. Syst. Nanostruct., 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004.
- Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua, 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2019), "Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method", Steel Compos. Struct., 32(3), 293-304. https://doi.org/10.12989/sem.2019.32.3.293.
- Raju, I. and Phillips, D. (2004), "Radial basis meshless local Petrov-Galerkin method for thick beams", 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, January.
- Raju, I.S. and Phillips, D.R. (2002), "A meshless local PetrovGalerkin method for Euler-Bernoulli beam problems", International Conference on Computational Engineering and Science, January
- Rao, S.S. (2004), Mechanical Vibrations, Pearson/Prentice Hall.
- Rashidpour, P., Ghadiri, M. and Zajkani, A. (2021), "Low-velocity impact analysis of viscoelastic composite laminated nanoplate based on nonlocal strain gradient theory for different boundary conditions", J. Sandw. Struct. Mater., 23(7), 3194-3233. https://doi.org/10.1177/1099636220925070.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Ren, H., Zhuang, X. and Rabczuk, T. (2020), "A nonlocal operator method for solving partial differential equations", Comput. Meth. Appl. Mech. Eng., 358, 112621. https://doi.org/10.1016/j.cma.2019.112621.
- Ren, Y.M. and Qing, H. (2021), "Bending and buckling analysis of functionally graded Euler-Bernoulli beam using stress-driven nonlocal integral model with bi-Helmholtz Kernel", Int. J. Appl. Mech., 13(04), 2150041. https://doi.org/10.1142/S1758825121500411.
- Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010.
- Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro-and nano-structures", Thin Wall. Struct., 170, 108562. https://doi.org/10.1016/j.tws.2021.108562.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., ... & Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Sayyad, A.S. and Ghugal, Y.M. (2020), "Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen's nonlocal theory", Int. J. Appl. Mech., 12(01), 2050007. https://doi.org/10.1142/S1758825120500076.
- Sburlati, R. (2004), "An exact solution for the impact law in thick elastic plates", Int. J. Solid. Struct., 41(9-10), 2539-2550. https://doi.org/10.1016/j.ijsolstr.2003.12.009.
- Schwerdtfeger, P., Burrows, A. and Smits, O.R. (2021), "The lennard-jones potential revisited: Analytical expressions for vibrational effects in cubic and hexagonal close-packed lattices", J. Phys. Chem. A, 125(14), 3037-3057. https://doi.org/10.1021/acs.jpca.1c00012.
- Seifoori, S. (2015), "Molecular dynamics analysis on impact behavior of carbon nanotubes", Appl. Surf. Sci., 326, 12-18. https://doi.org/10.1016/j.apsusc.2014.11.095.
- Seifoori, S. and Hajabdollahi, H. (2015), "Impact behavior of single-layered graphene sheets based on analytical model and molecular dynamics simulation", Appl. Surf. Sci., 351, 565-572. https://doi.org/10.1016/j.apsusc.2015.05.114.
- Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on Euler-Bernoulli nanobeam using a nonlocal elasticity model".
- Sepahi-Boroujeni, A., Hosseini-Hashemi, S. and SepahiBoroujeni, S. (2020), "Effects of surface tension of graphene sheet on impact and rebound behavior of colliding nanoparticle", Superlatt. Microstruct., 140, 106464. https://doi.org/10.1016/j.spmi.2020.106464.
- Stillinger, F.H. and Weber, T.A. (1985), "Computer simulation of local order in condensed phases of silicon", Phys. Rev. B, 31(8), 5262. https://doi.org/10.1103/PhysRevB.31.5262.
- Sun, W., Zeng, Q., Yu, A. and Kendall, K. (2013), "Calculation of normal contact forces between silica nanospheres", Langmuir, 29(25), 7825-7837. https://doi.org/10.1021/la401087j.
- Thai, C.H., Hung, P.T., Nguyen-Xuan, H. and Phung-Van, P. (2023), "A size-dependent meshfree approach for magnetoelectro-elastic functionally graded nanoplates based on nonlocal strain gradient theory", Eng. Struct., 292, 116521. https://doi.org/10.1016/j.engstruct.2023.116521.
- Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
- Wang, W., Li, S., Min, J., Yi, C., Zhan, Y. and Li, M. (2014), "Nanoindentation experiments for single-layer rectangular graphene films: A molecular dynamics study", Nanosc. Res. Lett., 9(1), 1-8. https://doi.org/10.1186/1556-276X-9-41.
- Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 462(2074), 2977-2995. https://doi.org/10.1098/rspa.2006.1712.
- Yang, L. and Tong, L. (2016), "Suspended monolayer graphene traps high-speed single-walled carbon nanotube", Carbon, 107, 689-695. https://doi.org/10.1016/j.carbon.2016.06.041.
- Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech.-A/Solid., 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225.