DOI QR코드

DOI QR Code

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdelhakim Bouhadra (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Belgacem Mamen (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abderahmane Menasria (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mohamed Bourada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdelmoumen Anis Bousahla (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Fouad Bourada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdeldjebbar Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University)
  • Received : 2023.03.20
  • Accepted : 2023.12.04
  • Published : 2024.01.25

Abstract

The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Keywords

References

  1. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125. 
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175. 
  3. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421. 
  4. Akbas, S.D. (2018a), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027. 
  5. Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337. 
  6. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649. 
  7. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001. 
  8. Ali Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065. 
  9. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705. 
  10. Alipour, M.M. and Shariyat, M. (2014), "Analytical stress analysis of annular FGM sandwich plates with non-uniform shear and normal tractions, employing a zigzag elasticity plate theory", Aerosp. Sci. Technol., 32(1), 235-259. https://doi.org/10.1016/j.ast.2013.10.007. 
  11. Al-Osta, M.A. (2022), "An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects", Compos. Struct., 297, 115984. https://doi.org/10.1016/j.compstruct.2022.115984. 
  12. Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2020), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064. 
  13. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011. 
  14. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603. 
  15. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037. 
  16. Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Solid. Struct., 32(19), 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z. 
  17. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 259, 113223. https://doi.org/10.1016/j.compstruct.2020.113223. 
  18. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769. 
  19. Brischetto, S. (2009), "Classical and mixed advanced models for sandwich plates embedding functionally graded cores", J. Mech. Mater. Struct., 4(1), 13-33. https://doi.org/10.2140/JOMMS.2009.4.13. 
  20. Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7. 
  21. Chaabani, H., Mesmoudi, S., Boutahar, L. and Bikri, K.E. (2022), "Buckling of porous FG sandwich plates subjected to various non-uniform compressions and resting on Winkler-Pasternak elastic foundation using a finite element model based on the high-order shear deformation theory", Acta Mechanica, 233, 5359-5376. https://doi.org/10.1007/s00707-022-03388-z. 
  22. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829. 
  23. Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723. 
  24. Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023. 
  25. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631. 
  26. Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433. 
  27. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468. 
  28. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semianalytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179. 
  29. Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029. 
  30. Feng, J., Safaei, B., Qin, Z. and Chu, F. (2023), "Nature-inspired energy dissipation sandwich composites reinforced with highfriction graphene", Compos. Sci. Technol., 233, 109925. https://doi.org/10.1142/S1758825122500715. 
  31. Funari, M.F., Greco, F. and Lonetti, P. (2018), "Sandwich panels under interfacial debonding mechanisms", Compos. Struct., 203, 310-320. https://doi.org/10.1016/j.compstruct.2018.06.113 
  32. Gao, W., Liu, Y., Qin, Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(07), 2250071. https://doi.org/10.1142/S1758825122500715. 
  33. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253. 
  34. Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043. 
  35. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the sizedependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101. 
  36. Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2018), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35, 467-485. https://doi.org/10.1007/s00366-018-0609-3. 
  37. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stress., 43(1), 90-108. https://doi.org/10.1080/01495739.2019.1673687. 
  38. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477. 
  39. Li, H., Liu, Y., Zhang, H., Qin, Z., Wang, Z., Deng, Y. and Ha, S. K. (2023), "Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core", Mech. Syst. Signal Pr., 186, 109845. https://doi.org/10.1016/j.ymssp.2022.109845. 
  40. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018 
  41. Liu, Y., Hu, W., Zhu, R., Safaei, B., Qin, Z. and Chu, F. (2022), "Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact", Aerosp. Sci. Technol., 121, 107321. https://doi.org/10.1016/j.ast.2021.107321. 
  42. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance", Appl. Math. Mech., 42, 805-818. https://doi.org/10.1007/s10483-021-2740-7. 
  43. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlin. Dyn., 104, 1007-1021. https://doi.org/10.1007/s11071-021-06358-7. 
  44. Liu, Y., Qin, Z. and Chu, F. (2022), "Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core", Mech. Adv. Mater. Struct., 29(9), 1338-1347. https://doi.org/10.1080/15376494.2020.1818904. 
  45. Liu, Y., Qin, Z. and Chu, F. (2022), "Investigation of magnetoelectro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells", Commun. Nonlin. Sci. Numer. Simul., 107, 106146. https://doi.org/10.1016/j.cnsns.2021.106146. 
  46. Liu, Y., Qin, Z. and Chu, F. (2022), "Nonlinear forced vibrations of rotating cylindrical shells under multi-harmonic excitations in thermal environment", Nonlin. Dyn., 108, 2977-2991. https://doi.org/10.1007/s11071-022-07449-9. 
  47. Liu, Y., Qin, Z., and Chu, F. (2023), "A nonlinear repeated impact model of auxetic honeycomb structures considering geometric nonlinearity and tensile/compressive deformation", J. Appl. Mech., 90(9), 091008. https://doi.org/10.1115/1.4062592. 
  48. Liu, Y., Wang, J., Hu, J., Qin, Z. and Chu, F. (2022), "Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields", Appl. Math. Mech., 43(10), 1543-1554. https://doi.org/10.1007/s10483-022-2904-9. 
  49. Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047 
  50. Liu, Y., Zhu, R., Qin, Z. and Chu, F. (2022), "A comprehensive study on vibration characteristics of corrugated cylindrical shells with arbitrary boundary conditions", Eng. Struct., 269, 114818. https://doi.org/10.1016/j.engstruct.2022.114818. 
  51. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427. 
  52. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097. 
  53. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151. 
  54. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181. 
  55. Mehar, K., Panda, S.K., Yuvarajan, D. and Gautam, C. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002. 
  56. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2021), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandw. Struct. Mater., 23(3), 1028-1057. https://doi.org/10.1177/1099636219851281. 
  57. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361. 
  58. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023. 
  59. Panda, S.K. and Singh, B.N. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007. 
  60. Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Stud. Therm. Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170. 
  61. Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247 
  62. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conicalconical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603. 
  63. Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  64. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361. 
  65. Singh, S.A. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668. 
  66. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003. 
  67. Sobhy, M. and Alakel Abazid, M. (2022), "Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson's ratio honeycomb core on an elastic substrate", Eur. Phys. J. Plus, 137(1), 1-21. https://doi.org/10.1140/epjp/s13360-021-02303-0. 
  68. Sobhy, M. and Zenkour, A.M. (2015), "Thermodynamical bending of FGM sandwich plates resting on Pasternak's elastic foundations", Adv. Appl. Math. Mech., 7(1), 116-134. https://doi.org/10.4208/aamm.2013.m143. 
  69. Swaminathan, K., Hirannaiah, S. and Rajanna, T. (2022), "Influence of porosity and nonuniform in-plane edge loads on vibration and buckling response of power law and sigmoid function based FG sandwich plates with geometrical discontinuities", Mech. Bas. Des. Struct. Mach., 51(10), 5636-5668. https://doi.org/10.1080/15397734.2022.2107010. 
  70. Talebitooti, R., Johari, J. and Zarastvand, M. (2018a), "Wave transmission across laminated composite plate in the subsonic flow investigating two-variable refined plate theory", Lat. Am. J. Solid. Struct., 15(5), e39. http://doi.org/10.1590/1679-78254352. 
  71. Talebitooti, R., Zarastvand, M. and Rouhani A.H.S. (2018b), "Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate", Lat. Am. J. Solid. Struct., 16(1), e139. http://doi.org/10.1590/1679-78254883. 
  72. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053. 
  73. Tornabene, F. and Viola, E. (2009), "Free vibrations of fourparameter functionally graded parabolic panels and shells of revolution", Eur. J. Mech.-A/Solid., 28(5), 991-1013. https://doi.org/10.1016/j.euromechsol.2009.04.005. 
  74. Van Vinh, P. (2021), "Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory", Forc. Mech., 4, 100039. https://doi.org/10.1016/j.finmec.2021.100039. 
  75. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044. 
  76. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations", Compos. Struct., 93(10), 2521-2532. https://doi.org/10.1016/j.compstruct.2011.04.014. 
  77. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617. 
  78. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179. 
  79. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107. 
  80. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661 
  81. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higherorder analysis model", J. Sandw. Struct. Mater., 23(2), 680-710. https://doi.org/10.1177/1099636220909763. 
  82. Zarastvand, M.R, Ghassabi, M. and Talebitooti, R. (2021), "Prediction of acoustic wave transmission features of the multilayered plate constructions: A review", J. Sandw. Struct. Mater., 24(1), 218-293. https://doi.org/10.1177/1099636221993891. 
  83. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2020), "A review approach for sound propagation prediction of plate constructions", Arch. Comput. Meth. Eng., 28, 2817-2843. https://doi.org/10.1007/s11831-020-09482-6. 
  84. Zhang, L. and Ko, T.H. (2022), "Bending and buckling of spinning FG nanotubes based on NSGT", Comput. Concrete, 30(4), 243-256. https://doi.org/10.12989/cac.2022.30.4.243. 
  85. Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.